Files
luban-lite-t3e-pro/bsp/examples_bare/test-rtp/test_rtp_draw.c

417 lines
11 KiB
C
Raw Normal View History

2023-08-30 16:21:18 +08:00
/*
* Copyright (c) 2022-2023, ArtInChip Technology Co., Ltd
*
* SPDX-License-Identifier: Apache-2.0
*
* Authors: matteo <duanmt@artinchip.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <console.h>
#include <getopt.h>
#include <unistd.h>
#include "aic_common.h"
#include "artinchip_fb.h"
#include "mpp_fb.h"
#include "hal_adcim.h"
#include "hal_rtp.h"
#define AIC_POINT_NUM 5
#define AIC_CROSS_LENGTH 50
#define AIC_CROSS_WIDTH 25
#define AIC_CROSS_HEIGHT 25
#define AIC_BITS_TO_BYTE_RATE 8
#define AIC_CALI_ACCURACY 65536.0
#define AIC_DRAW_POINT_NUM 1000
#define AIC_CALI_MIN_INTERVAL 150
static struct mpp_fb *g_fb = NULL;
static struct aicfb_screeninfo g_fb_info = {0};
static struct aic_rtp_dev g_rtp_dev = {0};
static int g_xres;
static int g_yres;
static bool g_draw_buf_sync = true;
static calibration g_cal = {
.x = { 0 },
.y = { 0 },
};
static const char sopts[] = "cp:dh";
static const struct option lopts[] = {
{"calibrate", no_argument, NULL, 'c'},
{"points", required_argument, NULL, 'p'},
{"draw", no_argument, NULL, 'd'},
{"help", no_argument, NULL, 'h'},
{0, 0, 0, 0}
};
static void cmd_rtp_usage(char *program)
{
printf("Usage: %s [options]\n", program);
printf("\t -c, --calibrate\tPlatform the screen calibration\n");
printf("\t -p, --points\t\tSet the points for drawing, defalut is 1000\n");
printf("\t -d, --draw\t\tDraw the shape\n");
printf("\t -h, --help \n");
printf("\n");
printf("Example: %s -c\n", program);
}
static int test_get_fb_info(void)
{
int ret = 0;
g_fb = mpp_fb_open();
if (!g_fb) {
pr_err("mpp_fb_open error!!!!\n");
return -1;
}
ret = mpp_fb_ioctl(g_fb, AICFB_GET_SCREENINFO, &g_fb_info);
if (ret < 0) {
pr_err("ioctl() failed! errno: -%d\n", -ret);
return -1;
}
pr_info("Screen width: %d, height: %d\n", g_fb_info.width,
g_fb_info.height);
g_xres = g_fb_info.width;
g_yres = g_fb_info.height;
return ret;
}
/* Draw a grid, and each cell size: 200*200 */
static void rtp_draw_grid(void)
{
u32 i, j;
u8 *fb = g_fb_info.framebuffer;
u8 rate = g_fb_info.bits_per_pixel / AIC_BITS_TO_BYTE_RATE;
int stride = g_fb_info.stride;
memset(fb, 0, g_fb_info.smem_len);
for (i = 1; i * 200 < g_fb_info.height; i++)
memset(fb + stride * (200 * i - 1), 0x30, stride);
for (i = 0; i < g_fb_info.height; i++)
for (j = 1; j * 200 < g_fb_info.width; j++)
memset(fb + stride * i + 200 * rate * j - rate, 0x30, rate);
aicos_dcache_clean_invalid_range(g_fb_info.framebuffer,
g_fb_info.smem_len);
}
static void test_draw_a_point(u32 cnt, struct aic_rtp_event *e,
calibration *cal)
{
u32 pos = 0;
u8 *buf = NULL;
int panel_x = 0;
int panel_y = 0;
int a[7] = {0};
u8 rate = g_fb_info.bits_per_pixel / AIC_BITS_TO_BYTE_RATE;
panel_x = AIC_RTP_MAX_VAL - e->x;
panel_y = AIC_RTP_MAX_VAL - e->y;
panel_x = (panel_x * g_fb_info.width) / AIC_RTP_MAX_VAL;
panel_y = (panel_y * g_fb_info.height) / AIC_RTP_MAX_VAL;
if (cal->a[6]) {
memcpy(a, cal->a, sizeof(a));
panel_x = (panel_x * a[1] + panel_y * a[2] + a[0]) / a[6];
panel_y = (panel_x * a[4] + panel_y * a[5] + a[3]) / a[6];
}
printf("%d: X %d/%d, Y %d/%d, Press %d\n", cnt,
panel_x, e->x, panel_y, e->y, e->pressure);
pos = panel_y * g_fb_info.stride + panel_x * rate;
if (pos < g_fb_info.smem_len) {
buf = g_fb_info.framebuffer + pos;
memset(buf, 0xFF, 4);
buf -= pos % CACHE_LINE_SIZE;
aicos_dcache_clean_invalid_range(buf, CACHE_LINE_SIZE);
return;
}
pr_err("Invalid position: %d\n", pos);
}
/* Draw a cross, and each line size: 50 */
static void rtp_draw_cross(calibration *cal, int index, char *name, int y,
int x)
{
u32 i;
u8 *fb = g_fb_info.framebuffer;
u8 rate = g_fb_info.bits_per_pixel / AIC_BITS_TO_BYTE_RATE;
int length = AIC_CROSS_LENGTH;
memset(fb, 0, g_fb_info.smem_len);
memset(fb + g_fb_info.stride * (y + length / 2) + rate * x, 0xFF, rate * length);
for (i = 0; i < length; i++)
memset(fb + g_fb_info.stride * (y + i) + rate * (x + length / 2) , 0xFF, rate);
cal->xfb[index] = x + length / 2;
cal->yfb[index] = y + length / 2;
printf("%s : X = %4d Y = %4d\n", name, cal->xfb[index], cal->yfb[index]);
aicos_dcache_clean_invalid_range(g_fb_info.framebuffer,
g_fb_info.smem_len);
return;
}
static int rtp_perform_calibration(calibration *cal)
{
int j;
float n, x, y, x2, y2, xy, z, zx, zy;
float det, a, b, c, e, f, i;
float scaling = AIC_CALI_ACCURACY;
/* Get sums for matrix */
n = x = y = x2 = y2 = xy = 0;
for (j = 0; j < AIC_POINT_NUM; j++) {
n += 1.0;
x += (float)cal->x[j];
y += (float)cal->y[j];
x2 += (float)(cal->x[j] * cal->x[j]);
y2 += (float)(cal->y[j] * cal->y[j]);
xy += (float)(cal->x[j] * cal->y[j]);
}
/* Get determinant of matrix -- check if determinant is too small */
det = n * (x2 * y2 - xy * xy) + x * (xy * y - x * y2) + y * (x * xy - y * x2);
if (det < 0.1 && det > -0.1) {
printf("ts_calibrate: determinant is too small -- %f\n", det);
return 0;
}
/* Get elements of inverse matrix */
a = (x2 * y2 - xy * xy) / det;
b = (xy * y - x * y2) / det;
c = (x * xy - y * x2) / det;
e = (n * y2 - y * y) / det;
f = (x * y - n * xy) / det;
i = (n * x2 - x * x) / det;
/* Get sums for x calibration */
z = zx = zy = 0;
for (j = 0; j < AIC_POINT_NUM; j++) {
z += (float)cal->xfb[j];
zx += (float)(cal->xfb[j] * cal->x[j]);
zy += (float)(cal->xfb[j] * cal->y[j]);
}
/* Now multiply out to get the calibration for framebuffer x coord */
cal->a[0] = (int)((a * z + b * zx + c * zy) * (scaling));
cal->a[1] = (int)((b * z + e * zx + f * zy) * (scaling));
cal->a[2] = (int)((c * z + f * zx + i * zy) * (scaling));
/* Get sums for y calibration */
z = zx = zy = 0;
for (j = 0; j < AIC_POINT_NUM; j++) {
z += (float)cal->yfb[j];
zx += (float)(cal->yfb[j] * cal->x[j]);
zy += (float)(cal->yfb[j] * cal->y[j]);
}
/* Now multiply out to get the calibration for framebuffer y coord */
cal->a[3] = (int)((a * z + b * zx + c * zy) * (scaling));
cal->a[4] = (int)((b * z + e * zx + f * zy) * (scaling));
cal->a[5] = (int)((c * z + f * zx + i * zy) * (scaling));
/* If we got here, we're OK, so assign scaling to a[6] and return */
cal->a[6] = (int)scaling;
return 1;
}
/* Calculate the average value of multiple points triggered by one click as
* the calibration point. Among them, the calibration point is the touch
* screen coordinate system */
static void rtp_getxy(calibration *cal,int index, struct aic_rtp_event *e)
{
int x=0, y=0;
int cnt = 0;
u32 tp_x = 0, tp_y = 0;
int sum_x =0;
int sum_y = 0;
int ret = 0;
u32 start_us, end_us;
start_us = aic_get_time_us();
do {
redocalibration:
memset(e, 0, sizeof(struct aic_rtp_event));
ret = hal_rtp_ebuf_read(&g_rtp_dev.ebuf, e);
end_us = aic_get_time_us();
if (ret < 0)
continue;
if (e->x > 0 || e->y > 0) {
start_us = aic_get_time_us();
x = e->x;
y = e->y;
sum_x += x;
sum_y += y;
cnt++;
}
} while (abs(end_us - start_us) < 600000);
if (x == 0){
start_us = aic_get_time_us();
goto redocalibration;
}
x = sum_x /cnt;
y = sum_y /cnt;
/* ADC value converted to touch panel's coordinate value */
tp_x = AIC_RTP_MAX_VAL - x;
tp_y = AIC_RTP_MAX_VAL - y;
tp_x = (tp_x * g_fb_info.width) / AIC_RTP_MAX_VAL;
tp_y = (tp_y * g_fb_info.height) / AIC_RTP_MAX_VAL;
cal->x[index] = tp_x;
cal->y[index] = tp_y;
printf("Calibration: X = %d, Y = %d\n", tp_x, tp_y);
return;
}
void rtp_calibrate(calibration *cal, struct aic_rtp_event *e)
{
int length = AIC_CROSS_LENGTH;
int width = AIC_CROSS_WIDTH;
int height = AIC_CROSS_HEIGHT;
memset(cal, 0, sizeof(&cal));
rtp_draw_cross(cal, 0, "Top left", height, width);
rtp_getxy(cal, 0, e);
rtp_draw_cross(cal, 1, "Top right", height, g_xres - width - length);
rtp_getxy(cal, 1, e);
rtp_draw_cross(cal, 2, "Bot right", g_yres - height - length,
g_xres - width - length);
rtp_getxy(cal, 2, e);
rtp_draw_cross(cal, 3, "Bot left", g_yres - height - length, width);
rtp_getxy(cal, 3, e);
rtp_draw_cross(cal, 4, "Center", (g_yres - length) / 2,
(g_xres - length) / 2);
rtp_getxy(cal, 4, e);
memset(g_fb_info.framebuffer, 0, g_fb_info.smem_len);
rtp_perform_calibration(cal);
return;
}
static int test_rtp_init(void)
{
if (hal_adcim_probe())
return -1;
if (hal_rtp_clk_init())
return -1;
g_rtp_dev.x_plate = 235;
g_rtp_dev.y_plate = 0;
g_rtp_dev.mode = RTP_MODE_AUTO2;
g_rtp_dev.max_press = 800;
g_rtp_dev.smp_period = 15;
g_rtp_dev.pressure_det = 1;
aicos_request_irq(RTP_IRQn, hal_rtp_isr, 0, NULL, NULL);
hal_rtp_enable(&g_rtp_dev, 1);
hal_rtp_int_enable(&g_rtp_dev, 1);
hal_rtp_auto_mode(&g_rtp_dev);
return 0;
}
static void ts_rtp_deinit(void)
{
hal_rtp_int_enable(&g_rtp_dev, 0);
hal_rtp_enable(&g_rtp_dev, 0);
}
static void rtp_draw(int max, struct aic_rtp_event *e, calibration *cal)
{
u32 ret, cnt = 0;
static u32 last_time = 0;
rtp_draw_grid();
pr_info("Try to read %d points from RTP ...\n", max);
do {
memset(e, 0, sizeof(struct aic_rtp_event));
ret = hal_rtp_ebuf_read(&g_rtp_dev.ebuf, e);
if (ret < 0)
continue;
if (e->x > 0 || e->y > 0) {
if (e->timestamp == last_time) {
continue;
}
last_time = e->timestamp;
test_draw_a_point(cnt, e, cal);
cnt++;
}
aicos_msleep(100);
} while (cnt < max);
}
static int cmd_test_rtp_draw(int argc, char *argv[])
{
int c;
struct aic_rtp_event e = {0};
static int draw_point_num = AIC_DRAW_POINT_NUM;
if (argc < 2) {
cmd_rtp_usage(argv[0]);
return 0;
}
if (test_get_fb_info())
return -1;
if (test_rtp_init())
return -1;
optind = 0;
while ((c = getopt_long(argc, argv, sopts, lopts, NULL)) != -1) {
switch (c) {
case 'c':
rtp_calibrate(&g_cal, &e);
break;
case 'p':
draw_point_num = atoi(optarg);
break;
case 'd':
g_draw_buf_sync = true;
rtp_draw(draw_point_num, &e, &g_cal);
break;
case 'h':
default:
cmd_rtp_usage(argv[0]);
return 0;
}
}
if (g_fb)
mpp_fb_close(g_fb);
ts_rtp_deinit();
return 0;
}
CONSOLE_CMD(test_rtp_draw, cmd_test_rtp_draw, "RTP test example");