Files
luban-lite-t3e-pro/bsp/artinchip/drv/spi/drv_spi.c

456 lines
12 KiB
C
Raw Normal View History

2024-10-30 16:50:31 +08:00
/*
* Copyright (c) 2024, ArtInChip Technology Co., Ltd
*
* SPDX-License-Identifier: Apache-2.0
*
* Authors: Jiji Chen <jiji.chen@artinchip.com>
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <string.h>
#include <aic_core.h>
#include <aic_drv.h>
#include <aic_hal.h>
#include <hal_qspi.h>
#include <hal_dma.h>
#include <aic_dma_id.h>
#include <aic_clk_id.h>
#define ASYNC_DATA_SIZE 64
struct aic_qspi {
struct rt_spi_bus dev;
char *name;
uint32_t idx;
uint32_t clk_id;
uint32_t clk_in_hz;
uint32_t dma_port_id;
uint32_t irq_num;
#if defined(AIC_QSPI_MULTIPLE_CS_NUM)
uint32_t cs_num;
#endif
qspi_master_handle handle;
struct rt_qspi_configuration configuration;
rt_sem_t xfer_sem;
bool inited;
uint32_t rxd_dlymode;
uint32_t txd_dlymode;
uint32_t txc_dlymode;
bool nonblock;
};
static struct aic_qspi spi_controller[] = {
#if defined(AIC_USING_QSPI1) && defined(AIC_QSPI1_BUS_SPI)
{
.name = "spi1",
.idx = 1,
.clk_id = CLK_QSPI1,
.clk_in_hz = AIC_DEV_QSPI1_MAX_SRC_FREQ_HZ,
.dma_port_id = DMA_ID_SPI1,
.irq_num = QSPI1_IRQn,
#if defined(AIC_QSPI_MULTIPLE_CS_NUM)
.cs_num = AIC_QSPI1_CS_NUM,
#endif
.rxd_dlymode = AIC_DEV_QSPI1_DELAY_MODE,
#if defined(AIC_QSPI_DRV_V20)
.txd_dlymode = AIC_DEV_QSPI1_TXD_DELAY_MODE,
.txc_dlymode = AIC_DEV_QSPI1_TX_CLK_DELAY_MODE,
#endif
},
#endif
#if defined(AIC_USING_QSPI2) && defined(AIC_QSPI2_BUS_SPI)
{
.name = "spi2",
.idx = 2,
.clk_id = CLK_QSPI2,
.clk_in_hz = AIC_DEV_QSPI2_MAX_SRC_FREQ_HZ,
.dma_port_id = DMA_ID_SPI2,
.irq_num = QSPI2_IRQn,
#if defined(AIC_QSPI_MULTIPLE_CS_NUM)
.cs_num = AIC_QSPI2_CS_NUM,
#endif
.rxd_dlymode = AIC_DEV_QSPI2_DELAY_MODE,
#if defined(AIC_QSPI_DRV_V20)
.txd_dlymode = AIC_DEV_QSPI2_TXD_DELAY_MODE,
.txc_dlymode = AIC_DEV_QSPI2_TX_CLK_DELAY_MODE,
#endif
},
#endif
#if defined(AIC_USING_QSPI3) && defined(AIC_QSPI3_BUS_SPI)
{
.name = "spi3",
.idx = 3,
.clk_id = CLK_QSPI3,
.clk_in_hz = AIC_DEV_QSPI3_MAX_SRC_FREQ_HZ,
.dma_port_id = DMA_ID_SPI3,
.irq_num = QSPI3_IRQn,
#if defined(AIC_QSPI_MULTIPLE_CS_NUM)
.cs_num = AIC_QSPI3_CS_NUM,
#endif
.rxd_dlymode = AIC_DEV_QSPI3_DELAY_MODE,
#if defined(AIC_QSPI_DRV_V20)
.txd_dlymode = AIC_DEV_QSPI3_TXD_DELAY_MODE,
.txc_dlymode = AIC_DEV_QSPI3_TX_CLK_DELAY_MODE,
#endif
},
#endif
#if defined(AIC_USING_QSPI4) && defined(AIC_QSPI4_BUS_SPI)
{
.name = "spi4",
.idx = 4,
.clk_id = CLK_QSPI4,
.clk_in_hz = AIC_DEV_QSPI4_MAX_SRC_FREQ_HZ,
.dma_port_id = DMA_ID_SPI4,
.irq_num = QSPI4_IRQn,
#if defined(AIC_QSPI_MULTIPLE_CS_NUM)
.cs_num = AIC_QSPI4_CS_NUM,
#endif
.rxd_dlymode = AIC_DEV_QSPI4_DELAY_MODE,
#if defined(AIC_QSPI_DRV_V20)
.txd_dlymode = AIC_DEV_QSPI4_TXD_DELAY_MODE,
.txc_dlymode = AIC_DEV_QSPI4_TX_CLK_DELAY_MODE,
#endif
},
#endif
};
static const u32 bit_mode_table[] = {
#ifdef AIC_QSPI1_BIT_MODE
1,
#endif
#ifdef AIC_QSPI2_BIT_MODE
2,
#endif
#ifdef AIC_QSPI3_BIT_MODE
3,
#endif
};
static bool spi_support_bit_mode(struct aic_qspi *qspi)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(bit_mode_table); i++) {
if (bit_mode_table[i] == qspi->idx)
return true;
}
return false;
}
#ifdef AIC_QSPI_DRV_DEBUG
void dump_cmd(uint8_t *data, uint32_t len)
{
uint32_t i;
printf("CMD: (%lu) ", (unsigned long)len);
for (i = 0; i < len; i++)
printf("%02X ", data[i]);
printf("\n");
}
#endif
static rt_uint32_t drv_spi_send(struct aic_qspi *qspi,
struct rt_spi_message *message,
const uint8_t *tx, uint32_t size)
{
struct qspi_transfer t;
u32 ret = 0;
t.rx_data = NULL;
t.tx_data = (uint8_t *)tx;
t.data_len = size;
ret = hal_qspi_master_transfer_sync(&qspi->handle, &t);
return ret;
}
static rt_uint32_t drv_spi_receive(struct aic_qspi *qspi,
struct rt_spi_message *message,
const uint8_t *tx, uint32_t size)
{
struct qspi_transfer t;
u32 ret = 0;
t.tx_data = NULL;
t.rx_data = (uint8_t *)tx;
t.data_len = size;
ret = hal_qspi_master_transfer_sync(&qspi->handle, &t);
return ret;
}
static rt_uint32_t drv_spi_transfer(struct aic_qspi *qspi,
struct rt_spi_message *message)
{
u32 ret = 0;
struct qspi_transfer t;
t.tx_data = (u8 *)message->send_buf;
t.rx_data = message->recv_buf;
t.data_len = message->length;
ret = hal_qspi_master_transfer_sync(&qspi->handle, &t);
return ret;
}
static void spi_set_cs_before(struct rt_spi_device *device,
struct rt_spi_message *message)
{
struct rt_qspi_configuration *cfg;
struct aic_qspi *qspi;
u32 cs_num = 0;
qspi = (struct aic_qspi *)device->bus;
cfg = &qspi->configuration;
if (message->cs_take && !(cfg->parent.mode & RT_SPI_NO_CS)) {
#if defined(AIC_QSPI_MULTIPLE_CS_NUM)
cs_num = qspi->cs_num;
#endif
hal_qspi_master_set_cs(&qspi->handle, cs_num, true);
}
}
static void spi_set_cs_after(struct rt_spi_device *device,
struct rt_spi_message *message)
{
struct rt_qspi_configuration *cfg;
struct aic_qspi *qspi;
u32 cs_num = 0;
qspi = (struct aic_qspi *)device->bus;
cfg = &qspi->configuration;
if (message->cs_release && !(cfg->parent.mode & RT_SPI_NO_CS)) {
#if defined(AIC_QSPI_MULTIPLE_CS_NUM)
cs_num = qspi->cs_num;
#endif
if (!qspi->nonblock)
hal_qspi_master_set_cs(&qspi->handle, cs_num, false);
}
}
static rt_uint32_t spi_xfer(struct rt_spi_device *device,
struct rt_spi_message *message)
{
struct aic_qspi *qspi;
rt_uint32_t ret = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
qspi = (struct aic_qspi *)device->bus;
spi_set_cs_before(device, message);
if (message->recv_buf && message->send_buf)
ret = drv_spi_transfer(qspi, message);
else if (message->recv_buf)
ret = drv_spi_receive(qspi, message, message->recv_buf, message->length);
else if (message->send_buf)
ret = drv_spi_send(qspi, message, message->send_buf, message->length);
spi_set_cs_after(device, message);
if (ret)
return ret;
return message->length;
}
static void qspi_master_async_callback(qspi_master_handle *h, void *priv)
{
struct aic_qspi *qspi = priv;
u32 cs_num = 0;
#if defined(AIC_QSPI_MULTIPLE_CS_NUM)
cs_num = qspi->cs_num;
#endif
rt_sem_release(qspi->xfer_sem);
hal_qspi_master_set_cs(&qspi->handle, cs_num, false);
}
static irqreturn_t qspi_irq_handler(int irq_num, void *arg)
{
qspi_master_handle *h = arg;
rt_interrupt_enter();
hal_qspi_master_irq_handler(h);
rt_interrupt_leave();
return IRQ_HANDLED;
}
static rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
struct qspi_master_config cfg;
struct aic_qspi *qspi;
rt_uint32_t bus_hz;
rt_err_t ret = RT_EOK;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
qspi = (struct aic_qspi *)device->bus;
if (spi_support_bit_mode(qspi))
qspi->handle.bit_mode = true;
else
qspi->handle.bit_mode = false;
if ((rt_memcmp(&qspi->configuration, configuration,
sizeof(struct rt_spi_configuration)) != 0) ||
(qspi->handle.bit_mode == true)) {
rt_memcpy(&qspi->configuration, configuration,
sizeof(struct rt_spi_configuration));
rt_memset(&cfg, 0, sizeof(cfg));
cfg.idx = qspi->idx;
cfg.clk_id = qspi->clk_id;
bus_hz = configuration->max_hz;
if (bus_hz < HAL_QSPI_MIN_FREQ_HZ)
bus_hz = HAL_QSPI_MIN_FREQ_HZ;
if (bus_hz > HAL_QSPI_MAX_FREQ_HZ)
bus_hz = HAL_QSPI_MAX_FREQ_HZ;
cfg.clk_in_hz = qspi->clk_in_hz;
if (cfg.clk_in_hz > HAL_QSPI_MAX_FREQ_HZ)
cfg.clk_in_hz = HAL_QSPI_MAX_FREQ_HZ;
if (qspi->clk_in_hz % bus_hz)
cfg.clk_in_hz = bus_hz;
if (cfg.clk_in_hz < HAL_QSPI_INPUT_MIN_FREQ_HZ)
cfg.clk_in_hz = HAL_QSPI_INPUT_MIN_FREQ_HZ;
if (configuration->mode & RT_SPI_MSB)
cfg.lsb_en = false;
else
cfg.lsb_en = true;
if (configuration->mode & RT_SPI_CPHA)
cfg.cpha = HAL_QSPI_CPHA_SECOND_EDGE;
else
cfg.cpha = HAL_QSPI_CPHA_FIRST_EDGE;
if (configuration->mode & RT_SPI_CPOL)
cfg.cpol = HAL_QSPI_CPOL_ACTIVE_LOW;
else
cfg.cpol = HAL_QSPI_CPOL_ACTIVE_HIGH;
if (configuration->mode & RT_SPI_CS_HIGH)
cfg.cs_polarity = HAL_QSPI_CS_POL_VALID_HIGH;
else
cfg.cs_polarity = HAL_QSPI_CS_POL_VALID_LOW;
cfg.rx_dlymode = qspi->rxd_dlymode;
cfg.tx_dlymode = aic_convert_tx_dlymode(qspi->txc_dlymode, qspi->txd_dlymode);
ret = hal_qspi_master_init(&qspi->handle, &cfg);
if (ret) {
pr_err("spi init failed.\n");
return ret;
}
if (!qspi->inited) {
#ifdef AIC_DMA_DRV
struct qspi_master_dma_config dmacfg;
rt_memset(&dmacfg, 0, sizeof(dmacfg));
dmacfg.port_id = qspi->dma_port_id;
ret = hal_qspi_master_dma_config(&qspi->handle, &dmacfg);
if (ret) {
pr_err("qspi dma config failed.\n");
return ret;
}
#endif
ret = hal_qspi_master_register_cb(&qspi->handle,
qspi_master_async_callback, qspi);
if (ret) {
pr_err("qspi register async callback failed.\n");
return ret;
}
aicos_request_irq(qspi->irq_num, qspi_irq_handler, 0, NULL,
(void *)&qspi->handle);
aicos_irq_enable(qspi->irq_num);
}
bus_hz = configuration->max_hz;
if (bus_hz > HAL_QSPI_MAX_FREQ_HZ)
bus_hz = HAL_QSPI_MAX_FREQ_HZ;
hal_qspi_master_set_bus_freq(&qspi->handle, bus_hz);
if (ret) {
pr_err("qspi set bus frequency failed.\n");
return ret;
}
}
qspi->inited = true;
return ret;
}
static rt_err_t spi_nonblock_set(struct rt_spi_device *device,
rt_uint32_t nonblock)
{
struct aic_qspi *qspi;
qspi = (struct aic_qspi *)device->bus;
if (nonblock == 1)
qspi->nonblock = true;
else
qspi->nonblock = false;
return RT_EOK;
}
static rt_uint32_t spi_get_transfer_status(struct rt_spi_device *device)
{
struct aic_qspi *qspi;
qspi = (struct aic_qspi *)device->bus;
return hal_qspi_master_get_status(&qspi->handle);
}
rt_err_t aic_spi_bus_attach_device(const char *bus_name,
const char *device_name)
{
struct rt_spi_device *spi_device = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
spi_device =
(struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
result = rt_spi_bus_attach_device(spi_device, device_name,
bus_name, RT_NULL);
if (result != RT_EOK && spi_device != NULL)
rt_free(spi_device);
return result;
}
static const struct rt_spi_ops aic_spi_ops = {
.configure = spi_configure,
.xfer = spi_xfer,
.nonblock = spi_nonblock_set,
.gstatus = spi_get_transfer_status,
};
static int rt_hw_spi_bus_init(void)
{
char sem_name[RT_NAME_MAX];
rt_err_t ret = RT_EOK;
int i;
for (i = 0; i < ARRAY_SIZE(spi_controller); i++) {
ret = rt_spi_bus_register(&spi_controller[i].dev,
spi_controller[i].name, &aic_spi_ops);
if (ret != RT_EOK)
break;
rt_sprintf(sem_name, "%s_s", spi_controller[i].name);
spi_controller[i].xfer_sem =
rt_sem_create(sem_name, 0, RT_IPC_FLAG_PRIO);
if (!spi_controller[i].xfer_sem) {
ret = RT_ENOMEM;
break;
}
}
return ret;
}
INIT_BOARD_EXPORT(rt_hw_spi_bus_init);