2025-09-30 11:56:06 +08:00
/*
* This file is part of the MicroPython project , http : //micropython.org/
*
* The MIT License ( MIT )
*
* Copyright ( c ) 2013 , 2014 Damien P . George
*
* Permission is hereby granted , free of charge , to any person obtaining a copy
* of this software and associated documentation files ( the " Software " ) , to deal
* in the Software without restriction , including without limitation the rights
* to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
* copies of the Software , and to permit persons to whom the Software is
* furnished to do so , subject to the following conditions :
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software .
*
* THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
* IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
* LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE .
*/
# ifndef MICROPY_INCLUDED_PY_OBJ_H
# define MICROPY_INCLUDED_PY_OBJ_H
# include <assert.h>
# include "py/mpconfig.h"
# include "py/misc.h"
# include "py/qstr.h"
# include "py/mpprint.h"
# include "py/runtime0.h"
// This is the definition of the opaque MicroPython object type.
// All concrete objects have an encoding within this type and the
// particular encoding is specified by MICROPY_OBJ_REPR.
# if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
typedef uint64_t mp_obj_t ;
typedef uint64_t mp_const_obj_t ;
# else
typedef void * mp_obj_t ;
typedef const void * mp_const_obj_t ;
# endif
// This mp_obj_type_t struct is a concrete MicroPython object which holds info
// about a type. See below for actual definition of the struct.
typedef struct _mp_obj_type_t mp_obj_type_t ;
// Anything that wants to be a concrete MicroPython object must have mp_obj_base_t
// as its first member (small ints, qstr objs and inline floats are not concrete).
struct _mp_obj_base_t {
const mp_obj_type_t * type MICROPY_OBJ_BASE_ALIGNMENT ;
} ;
typedef struct _mp_obj_base_t mp_obj_base_t ;
// These fake objects are used to indicate certain things in arguments or return
// values, and should only be used when explicitly allowed.
//
// - MP_OBJ_NULL : used to indicate the absence of an object, or unsupported operation.
// - MP_OBJ_STOP_ITERATION : used instead of throwing a StopIteration, for efficiency.
// - MP_OBJ_SENTINEL : used for various internal purposes where one needs
// an object which is unique from all other objects, including MP_OBJ_NULL.
//
// For debugging purposes they are all different. For non-debug mode, we alias
// as many as we can to MP_OBJ_NULL because it's cheaper to load/compare 0.
# if MICROPY_DEBUG_MP_OBJ_SENTINELS
# define MP_OBJ_NULL (MP_OBJ_FROM_PTR((void *)0))
# define MP_OBJ_STOP_ITERATION (MP_OBJ_FROM_PTR((void *)4))
# define MP_OBJ_SENTINEL (MP_OBJ_FROM_PTR((void *)8))
# else
# define MP_OBJ_NULL (MP_OBJ_FROM_PTR((void *)0))
# define MP_OBJ_STOP_ITERATION (MP_OBJ_FROM_PTR((void *)0))
# define MP_OBJ_SENTINEL (MP_OBJ_FROM_PTR((void *)4))
# endif
// These macros/inline functions operate on objects and depend on the
// particular object representation. They are used to query, pack and
// unpack small ints, qstrs and full object pointers.
# if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_A
static inline bool mp_obj_is_small_int ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 1 ) ! = 0 ;
}
# define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1)
# define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 1) | 1))
static inline bool mp_obj_is_qstr ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 7 ) = = 2 ;
}
# define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 3)
# define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 3) | 2))
static inline bool mp_obj_is_immediate_obj ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 7 ) = = 6 ;
}
# define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 3)
# define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 3) | 6))
# if MICROPY_PY_BUILTINS_FLOAT
# define mp_const_float_e MP_ROM_PTR(&mp_const_float_e_obj)
# define mp_const_float_pi MP_ROM_PTR(&mp_const_float_pi_obj)
extern const struct _mp_obj_float_t mp_const_float_e_obj ;
extern const struct _mp_obj_float_t mp_const_float_pi_obj ;
# define mp_obj_is_float(o) mp_obj_is_type((o), &mp_type_float)
mp_float_t mp_obj_float_get ( mp_obj_t self_in ) ;
mp_obj_t mp_obj_new_float ( mp_float_t value ) ;
# endif
static inline bool mp_obj_is_obj ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 3 ) = = 0 ;
}
# elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_B
static inline bool mp_obj_is_small_int ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 3 ) = = 1 ;
}
# define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 2)
# define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 2) | 1))
static inline bool mp_obj_is_qstr ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 7 ) = = 3 ;
}
# define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 3)
# define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 3) | 3))
static inline bool mp_obj_is_immediate_obj ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 7 ) = = 7 ;
}
# define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 3)
# define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 3) | 7))
# if MICROPY_PY_BUILTINS_FLOAT
# define mp_const_float_e MP_ROM_PTR(&mp_const_float_e_obj)
# define mp_const_float_pi MP_ROM_PTR(&mp_const_float_pi_obj)
extern const struct _mp_obj_float_t mp_const_float_e_obj ;
extern const struct _mp_obj_float_t mp_const_float_pi_obj ;
# define mp_obj_is_float(o) mp_obj_is_type((o), &mp_type_float)
mp_float_t mp_obj_float_get ( mp_obj_t self_in ) ;
mp_obj_t mp_obj_new_float ( mp_float_t value ) ;
# endif
static inline bool mp_obj_is_obj ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 1 ) = = 0 ;
}
# elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
static inline bool mp_obj_is_small_int ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 1 ) ! = 0 ;
}
# define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1)
# define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 1) | 1))
# if MICROPY_PY_BUILTINS_FLOAT
# define mp_const_float_e MP_ROM_PTR((mp_obj_t)(((0x402df854 & ~3) | 2) + 0x80800000))
# define mp_const_float_pi MP_ROM_PTR((mp_obj_t)(((0x40490fdb & ~3) | 2) + 0x80800000))
static inline bool mp_obj_is_float ( mp_const_obj_t o ) {
return ( ( ( mp_uint_t ) ( o ) ) & 3 ) = = 2 & & ( ( ( mp_uint_t ) ( o ) ) & 0xff800007 ) ! = 0x00000006 ;
}
static inline mp_float_t mp_obj_float_get ( mp_const_obj_t o ) {
union {
mp_float_t f ;
mp_uint_t u ;
} num = { . u = ( ( mp_uint_t ) o - 0x80800000 ) & ~ 3 } ;
return num . f ;
}
static inline mp_obj_t mp_obj_new_float ( mp_float_t f ) {
union {
mp_float_t f ;
mp_uint_t u ;
} num = { . f = f } ;
return ( mp_obj_t ) ( ( ( num . u & ~ 0x3 ) | 2 ) + 0x80800000 ) ;
}
# endif
static inline bool mp_obj_is_qstr ( mp_const_obj_t o ) {
return ( ( ( mp_uint_t ) ( o ) ) & 0xff80000f ) = = 0x00000006 ;
}
# define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 4)
# define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 4) | 0x00000006))
static inline bool mp_obj_is_immediate_obj ( mp_const_obj_t o ) {
return ( ( ( mp_uint_t ) ( o ) ) & 0xff80000f ) = = 0x0000000e ;
}
# define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) (((mp_uint_t)(o)) >> 4)
# define MP_OBJ_NEW_IMMEDIATE_OBJ(val) ((mp_obj_t)(((val) << 4) | 0xe))
static inline bool mp_obj_is_obj ( mp_const_obj_t o ) {
return ( ( ( mp_int_t ) ( o ) ) & 3 ) = = 0 ;
}
# elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
static inline bool mp_obj_is_small_int ( mp_const_obj_t o ) {
return ( ( ( uint64_t ) ( o ) ) & 0xffff000000000000 ) = = 0x0001000000000000 ;
}
# define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)((o) << 16)) >> 17)
# define MP_OBJ_NEW_SMALL_INT(small_int) (((((uint64_t)(small_int)) & 0x7fffffffffff) << 1) | 0x0001000000000001)
static inline bool mp_obj_is_qstr ( mp_const_obj_t o ) {
return ( ( ( uint64_t ) ( o ) ) & 0xffff000000000000 ) = = 0x0002000000000000 ;
}
# define MP_OBJ_QSTR_VALUE(o) ((((uint32_t)(o)) >> 1) & 0xffffffff)
# define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)(((uint64_t)(((uint32_t)(qst)) << 1)) | 0x0002000000000001))
static inline bool mp_obj_is_immediate_obj ( mp_const_obj_t o ) {
return ( ( ( uint64_t ) ( o ) ) & 0xffff000000000000 ) = = 0x0003000000000000 ;
}
# define MP_OBJ_IMMEDIATE_OBJ_VALUE(o) ((((uint32_t)(o)) >> 46) & 3)
# define MP_OBJ_NEW_IMMEDIATE_OBJ(val) (((uint64_t)(val) << 46) | 0x0003000000000000)
# if MICROPY_PY_BUILTINS_FLOAT
# if MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_DOUBLE
# error MICROPY_OBJ_REPR_D requires MICROPY_FLOAT_IMPL_DOUBLE
# endif
# define mp_const_float_e {((mp_obj_t)((uint64_t)0x4005bf0a8b145769 + 0x8004000000000000))}
# define mp_const_float_pi {((mp_obj_t)((uint64_t)0x400921fb54442d18 + 0x8004000000000000))}
static inline bool mp_obj_is_float ( mp_const_obj_t o ) {
return ( ( uint64_t ) ( o ) & 0xfffc000000000000 ) ! = 0 ;
}
static inline mp_float_t mp_obj_float_get ( mp_const_obj_t o ) {
union {
mp_float_t f ;
uint64_t r ;
} num = { . r = o - 0x8004000000000000 } ;
return num . f ;
}
static inline mp_obj_t mp_obj_new_float ( mp_float_t f ) {
union {
mp_float_t f ;
uint64_t r ;
} num = { . f = f } ;
return num . r + 0x8004000000000000 ;
}
# endif
static inline bool mp_obj_is_obj ( mp_const_obj_t o ) {
return ( ( ( uint64_t ) ( o ) ) & 0xffff000000000000 ) = = 0x0000000000000000 ;
}
# define MP_OBJ_TO_PTR(o) ((void *)(uintptr_t)(o))
# define MP_OBJ_FROM_PTR(p) ((mp_obj_t)((uintptr_t)(p)))
// rom object storage needs special handling to widen 32-bit pointer to 64-bits
typedef union _mp_rom_obj_t { uint64_t u64 ;
struct { const void * lo , * hi ;
} u32 ;
} mp_rom_obj_t ;
# define MP_ROM_INT(i) {MP_OBJ_NEW_SMALL_INT(i)}
# define MP_ROM_QSTR(q) {MP_OBJ_NEW_QSTR(q)}
# if MP_ENDIANNESS_LITTLE
# define MP_ROM_PTR(p) {.u32 = {.lo = (p), .hi = NULL}}
# else
# define MP_ROM_PTR(p) {.u32 = {.lo = NULL, .hi = (p)}}
# endif
# endif
// Macros to convert between mp_obj_t and concrete object types.
// These are identity operations in MicroPython, but ability to override
// these operations are provided to experiment with other methods of
// object representation and memory management.
// Cast mp_obj_t to object pointer
# ifndef MP_OBJ_TO_PTR
# define MP_OBJ_TO_PTR(o) ((void *)o)
# endif
// Cast object pointer to mp_obj_t
# ifndef MP_OBJ_FROM_PTR
# define MP_OBJ_FROM_PTR(p) ((mp_obj_t)p)
# endif
// Macros to create objects that are stored in ROM.
# ifndef MP_ROM_NONE
# if MICROPY_OBJ_IMMEDIATE_OBJS
# define MP_ROM_NONE mp_const_none
# else
# define MP_ROM_NONE MP_ROM_PTR(&mp_const_none_obj)
# endif
# endif
# ifndef MP_ROM_FALSE
# if MICROPY_OBJ_IMMEDIATE_OBJS
# define MP_ROM_FALSE mp_const_false
# define MP_ROM_TRUE mp_const_true
# else
# define MP_ROM_FALSE MP_ROM_PTR(&mp_const_false_obj)
# define MP_ROM_TRUE MP_ROM_PTR(&mp_const_true_obj)
# endif
# endif
# ifndef MP_ROM_INT
typedef mp_const_obj_t mp_rom_obj_t ;
# define MP_ROM_INT(i) MP_OBJ_NEW_SMALL_INT(i)
# define MP_ROM_QSTR(q) MP_OBJ_NEW_QSTR(q)
# define MP_ROM_PTR(p) (p)
/* for testing
typedef struct _mp_rom_obj_t { mp_const_obj_t o ; } mp_rom_obj_t ;
# define MP_ROM_INT(i) {MP_OBJ_NEW_SMALL_INT(i)}
# define MP_ROM_QSTR(q) {MP_OBJ_NEW_QSTR(q)}
# define MP_ROM_PTR(p) {.o = p}
*/
# endif
// These macros are used to declare and define constant function objects
// You can put "static" in front of the definitions to make them local
# define MP_DECLARE_CONST_FUN_OBJ_0(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
# define MP_DECLARE_CONST_FUN_OBJ_1(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
# define MP_DECLARE_CONST_FUN_OBJ_2(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
# define MP_DECLARE_CONST_FUN_OBJ_3(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
# define MP_DECLARE_CONST_FUN_OBJ_VAR(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
# define MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
# define MP_DECLARE_CONST_FUN_OBJ_KW(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
# define MP_OBJ_FUN_ARGS_MAX (0xffff) // to set maximum value in n_args_max below
# define MP_OBJ_FUN_MAKE_SIG(n_args_min, n_args_max, takes_kw) ((uint32_t)((((uint32_t)(n_args_min)) << 17) | (((uint32_t)(n_args_max)) << 1) | ((takes_kw) ? 1 : 0)))
# define MP_DEFINE_CONST_FUN_OBJ_0(obj_name, fun_name) \
const mp_obj_fun_builtin_fixed_t obj_name = \
{ { & mp_type_fun_builtin_0 } , . fun . _0 = fun_name }
# define MP_DEFINE_CONST_FUN_OBJ_1(obj_name, fun_name) \
const mp_obj_fun_builtin_fixed_t obj_name = \
{ { & mp_type_fun_builtin_1 } , . fun . _1 = fun_name }
# define MP_DEFINE_CONST_FUN_OBJ_2(obj_name, fun_name) \
const mp_obj_fun_builtin_fixed_t obj_name = \
{ { & mp_type_fun_builtin_2 } , . fun . _2 = fun_name }
# define MP_DEFINE_CONST_FUN_OBJ_3(obj_name, fun_name) \
const mp_obj_fun_builtin_fixed_t obj_name = \
{ { & mp_type_fun_builtin_3 } , . fun . _3 = fun_name }
# define MP_DEFINE_CONST_FUN_OBJ_VAR(obj_name, n_args_min, fun_name) \
const mp_obj_fun_builtin_var_t obj_name = \
{ { & mp_type_fun_builtin_var } , MP_OBJ_FUN_MAKE_SIG ( n_args_min , MP_OBJ_FUN_ARGS_MAX , false ) , . fun . var = fun_name }
# define MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name, n_args_min, n_args_max, fun_name) \
const mp_obj_fun_builtin_var_t obj_name = \
{ { & mp_type_fun_builtin_var } , MP_OBJ_FUN_MAKE_SIG ( n_args_min , n_args_max , false ) , . fun . var = fun_name }
# define MP_DEFINE_CONST_FUN_OBJ_KW(obj_name, n_args_min, fun_name) \
const mp_obj_fun_builtin_var_t obj_name = \
{ { & mp_type_fun_builtin_var } , MP_OBJ_FUN_MAKE_SIG ( n_args_min , MP_OBJ_FUN_ARGS_MAX , true ) , . fun . kw = fun_name }
// These macros are used to define constant map/dict objects
// You can put "static" in front of the definition to make it local
# define MP_DEFINE_CONST_MAP(map_name, table_name) \
const mp_map_t map_name = { \
. all_keys_are_qstrs = 1 , \
. is_fixed = 1 , \
. is_ordered = 1 , \
. used = MP_ARRAY_SIZE ( table_name ) , \
. alloc = MP_ARRAY_SIZE ( table_name ) , \
. table = ( mp_map_elem_t * ) ( mp_rom_map_elem_t * ) table_name , \
}
# define MP_DEFINE_CONST_DICT(dict_name, table_name) \
const mp_obj_dict_t dict_name = { \
. base = { & mp_type_dict } , \
. map = { \
. all_keys_are_qstrs = 1 , \
. is_fixed = 1 , \
. is_ordered = 1 , \
. used = MP_ARRAY_SIZE ( table_name ) , \
. alloc = MP_ARRAY_SIZE ( table_name ) , \
. table = ( mp_map_elem_t * ) ( mp_rom_map_elem_t * ) table_name , \
} , \
}
// These macros are used to declare and define constant staticmethond and classmethod objects
// You can put "static" in front of the definitions to make them local
# define MP_DECLARE_CONST_STATICMETHOD_OBJ(obj_name) extern const mp_rom_obj_static_class_method_t obj_name
# define MP_DECLARE_CONST_CLASSMETHOD_OBJ(obj_name) extern const mp_rom_obj_static_class_method_t obj_name
# define MP_DEFINE_CONST_STATICMETHOD_OBJ(obj_name, fun_name) const mp_rom_obj_static_class_method_t obj_name = {{&mp_type_staticmethod}, fun_name}
# define MP_DEFINE_CONST_CLASSMETHOD_OBJ(obj_name, fun_name) const mp_rom_obj_static_class_method_t obj_name = {{&mp_type_classmethod}, fun_name}
// Declare a module as a builtin, processed by makemoduledefs.py
// param module_name: MP_QSTR_<module name>
// param obj_module: mp_obj_module_t instance
// prarm enabled_define: used as `#if (enabled_define) around entry`
# define MP_REGISTER_MODULE(module_name, obj_module, enabled_define)
// Underlying map/hash table implementation (not dict object or map function)
typedef struct _mp_map_elem_t {
mp_obj_t key ;
mp_obj_t value ;
} mp_map_elem_t ;
typedef struct _mp_rom_map_elem_t {
mp_rom_obj_t key ;
mp_rom_obj_t value ;
} mp_rom_map_elem_t ;
typedef struct _mp_map_t {
size_t all_keys_are_qstrs : 1 ;
size_t is_fixed : 1 ; // if set, table is fixed/read-only and can't be modified
size_t is_ordered : 1 ; // if set, table is an ordered array, not a hash map
size_t used : ( 8 * sizeof ( size_t ) - 3 ) ;
size_t alloc ;
mp_map_elem_t * table ;
} mp_map_t ;
// mp_set_lookup requires these constants to have the values they do
typedef enum _mp_map_lookup_kind_t {
MP_MAP_LOOKUP = 0 ,
MP_MAP_LOOKUP_ADD_IF_NOT_FOUND = 1 ,
MP_MAP_LOOKUP_REMOVE_IF_FOUND = 2 ,
MP_MAP_LOOKUP_ADD_IF_NOT_FOUND_OR_REMOVE_IF_FOUND = 3 , // only valid for mp_set_lookup
} mp_map_lookup_kind_t ;
static inline bool mp_map_slot_is_filled ( const mp_map_t * map , size_t pos ) {
assert ( pos < map - > alloc ) ;
return ( map ) - > table [ pos ] . key ! = MP_OBJ_NULL & & ( map ) - > table [ pos ] . key ! = MP_OBJ_SENTINEL ;
}
void mp_map_init ( mp_map_t * map , size_t n ) ;
void mp_map_init_fixed_table ( mp_map_t * map , size_t n , const mp_obj_t * table ) ;
mp_map_t * mp_map_new ( size_t n ) ;
void mp_map_deinit ( mp_map_t * map ) ;
void mp_map_free ( mp_map_t * map ) ;
mp_map_elem_t * mp_map_lookup ( mp_map_t * map , mp_obj_t index , mp_map_lookup_kind_t lookup_kind ) ;
void mp_map_clear ( mp_map_t * map ) ;
void mp_map_dump ( mp_map_t * map ) ;
// Underlying set implementation (not set object)
typedef struct _mp_set_t {
size_t alloc ;
size_t used ;
mp_obj_t * table ;
} mp_set_t ;
static inline bool mp_set_slot_is_filled ( const mp_set_t * set , size_t pos ) {
return ( set ) - > table [ pos ] ! = MP_OBJ_NULL & & ( set ) - > table [ pos ] ! = MP_OBJ_SENTINEL ;
}
void mp_set_init ( mp_set_t * set , size_t n ) ;
mp_obj_t mp_set_lookup ( mp_set_t * set , mp_obj_t index , mp_map_lookup_kind_t lookup_kind ) ;
mp_obj_t mp_set_remove_first ( mp_set_t * set ) ;
void mp_set_clear ( mp_set_t * set ) ;
// Type definitions for methods
typedef mp_obj_t ( * mp_fun_0_t ) ( void ) ;
typedef mp_obj_t ( * mp_fun_1_t ) ( mp_obj_t ) ;
typedef mp_obj_t ( * mp_fun_2_t ) ( mp_obj_t , mp_obj_t ) ;
typedef mp_obj_t ( * mp_fun_3_t ) ( mp_obj_t , mp_obj_t , mp_obj_t ) ;
typedef mp_obj_t ( * mp_fun_var_t ) ( size_t n , const mp_obj_t * ) ;
// mp_fun_kw_t takes mp_map_t* (and not const mp_map_t*) to ease passing
// this arg to mp_map_lookup().
typedef mp_obj_t ( * mp_fun_kw_t ) ( size_t n , const mp_obj_t * , mp_map_t * ) ;
// Flags for type behaviour (mp_obj_type_t.flags)
// If MP_TYPE_FLAG_EQ_NOT_REFLEXIVE is clear then __eq__ is reflexive (A==A returns True).
// If MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE is clear then the type can't be equal to an
// instance of any different class that also clears this flag. If this flag is set
// then the type may check for equality against a different type.
// If MP_TYPE_FLAG_EQ_HAS_NEQ_TEST is clear then the type only implements the __eq__
// operator and not the __ne__ operator. If it's set then __ne__ may be implemented.
// If MP_TYPE_FLAG_BINDS_SELF is set then the type as a method binds self as the first arg.
// If MP_TYPE_FLAG_BUILTIN_FUN is set then the type is a built-in function type.
# define MP_TYPE_FLAG_IS_SUBCLASSED (0x0001)
# define MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS (0x0002)
# define MP_TYPE_FLAG_EQ_NOT_REFLEXIVE (0x0004)
# define MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE (0x0008)
# define MP_TYPE_FLAG_EQ_HAS_NEQ_TEST (0x0010)
# define MP_TYPE_FLAG_BINDS_SELF (0x0020)
# define MP_TYPE_FLAG_BUILTIN_FUN (0x0040)
typedef enum {
PRINT_STR = 0 ,
PRINT_REPR = 1 ,
PRINT_EXC = 2 , // Special format for printing exception in unhandled exception message
PRINT_JSON = 3 ,
PRINT_RAW = 4 , // Special format for printing bytes as an undercorated string
PRINT_EXC_SUBCLASS = 0x80 , // Internal flag for printing exception subclasses
} mp_print_kind_t ;
typedef struct _mp_obj_iter_buf_t {
mp_obj_base_t base ;
mp_obj_t buf [ 3 ] ;
} mp_obj_iter_buf_t ;
// The number of slots that an mp_obj_iter_buf_t needs on the Python value stack.
// It's rounded up in case mp_obj_base_t is smaller than mp_obj_t (eg for OBJ_REPR_D).
# define MP_OBJ_ITER_BUF_NSLOTS ((sizeof(mp_obj_iter_buf_t) + sizeof(mp_obj_t) - 1) / sizeof(mp_obj_t))
typedef void ( * mp_print_fun_t ) ( const mp_print_t * print , mp_obj_t o , mp_print_kind_t kind ) ;
typedef mp_obj_t ( * mp_make_new_fun_t ) ( const mp_obj_type_t * type , size_t n_args , size_t n_kw , const mp_obj_t * args ) ;
typedef mp_obj_t ( * mp_call_fun_t ) ( mp_obj_t fun , size_t n_args , size_t n_kw , const mp_obj_t * args ) ;
typedef mp_obj_t ( * mp_unary_op_fun_t ) ( mp_unary_op_t op , mp_obj_t ) ;
typedef mp_obj_t ( * mp_binary_op_fun_t ) ( mp_binary_op_t op , mp_obj_t , mp_obj_t ) ;
typedef void ( * mp_attr_fun_t ) ( mp_obj_t self_in , qstr attr , mp_obj_t * dest ) ;
typedef mp_obj_t ( * mp_subscr_fun_t ) ( mp_obj_t self_in , mp_obj_t index , mp_obj_t value ) ;
typedef mp_obj_t ( * mp_getiter_fun_t ) ( mp_obj_t self_in , mp_obj_iter_buf_t * iter_buf ) ;
// Buffer protocol
typedef struct _mp_buffer_info_t {
void * buf ; // can be NULL if len == 0
size_t len ; // in bytes
int typecode ; // as per binary.h
} mp_buffer_info_t ;
# define MP_BUFFER_READ (1)
# define MP_BUFFER_WRITE (2)
# define MP_BUFFER_RW (MP_BUFFER_READ | MP_BUFFER_WRITE)
typedef struct _mp_buffer_p_t {
mp_int_t ( * get_buffer ) ( mp_obj_t obj , mp_buffer_info_t * bufinfo , mp_uint_t flags ) ;
} mp_buffer_p_t ;
bool mp_get_buffer ( mp_obj_t obj , mp_buffer_info_t * bufinfo , mp_uint_t flags ) ;
void mp_get_buffer_raise ( mp_obj_t obj , mp_buffer_info_t * bufinfo , mp_uint_t flags ) ;
struct _mp_obj_type_t {
// A type is an object so must start with this entry, which points to mp_type_type.
mp_obj_base_t base ;
// Flags associated with this type.
uint16_t flags ;
// The name of this type, a qstr.
uint16_t name ;
// Corresponds to __repr__ and __str__ special methods.
mp_print_fun_t print ;
// Corresponds to __new__ and __init__ special methods, to make an instance of the type.
mp_make_new_fun_t make_new ;
// Corresponds to __call__ special method, ie T(...).
mp_call_fun_t call ;
// Implements unary and binary operations.
// Can return MP_OBJ_NULL if the operation is not supported.
mp_unary_op_fun_t unary_op ;
mp_binary_op_fun_t binary_op ;
// Implements load, store and delete attribute.
//
// dest[0] = MP_OBJ_NULL means load
// return: for fail, do nothing
// for attr, dest[0] = value
// for method, dest[0] = method, dest[1] = self
//
// dest[0,1] = {MP_OBJ_SENTINEL, MP_OBJ_NULL} means delete
// dest[0,1] = {MP_OBJ_SENTINEL, object} means store
// return: for fail, do nothing
// for success set dest[0] = MP_OBJ_NULL
mp_attr_fun_t attr ;
// Implements load, store and delete subscripting:
// - value = MP_OBJ_SENTINEL means load
// - value = MP_OBJ_NULL means delete
// - all other values mean store the value
// Can return MP_OBJ_NULL if operation not supported.
mp_subscr_fun_t subscr ;
// Corresponds to __iter__ special method.
// Can use the given mp_obj_iter_buf_t to store iterator object,
// otherwise can return a pointer to an object on the heap.
mp_getiter_fun_t getiter ;
// Corresponds to __next__ special method. May return MP_OBJ_STOP_ITERATION
// as an optimisation instead of raising StopIteration() with no args.
mp_fun_1_t iternext ;
// Implements the buffer protocol if supported by this type.
mp_buffer_p_t buffer_p ;
// One of disjoint protocols (interfaces), like mp_stream_p_t, etc.
const void * protocol ;
// A pointer to the parents of this type:
// - 0 parents: pointer is NULL (object is implicitly the single parent)
// - 1 parent: a pointer to the type of that parent
// - 2 or more parents: pointer to a tuple object containing the parent types
const void * parent ;
// A dict mapping qstrs to objects local methods/constants/etc.
struct _mp_obj_dict_t * locals_dict ;
} ;
// Constant types, globally accessible
extern const mp_obj_type_t mp_type_type ;
extern const mp_obj_type_t mp_type_object ;
extern const mp_obj_type_t mp_type_NoneType ;
extern const mp_obj_type_t mp_type_bool ;
extern const mp_obj_type_t mp_type_int ;
extern const mp_obj_type_t mp_type_str ;
extern const mp_obj_type_t mp_type_bytes ;
extern const mp_obj_type_t mp_type_bytearray ;
extern const mp_obj_type_t mp_type_memoryview ;
extern const mp_obj_type_t mp_type_float ;
extern const mp_obj_type_t mp_type_complex ;
extern const mp_obj_type_t mp_type_tuple ;
extern const mp_obj_type_t mp_type_list ;
extern const mp_obj_type_t mp_type_map ; // map (the python builtin, not the dict implementation detail)
extern const mp_obj_type_t mp_type_enumerate ;
extern const mp_obj_type_t mp_type_filter ;
extern const mp_obj_type_t mp_type_deque ;
extern const mp_obj_type_t mp_type_dict ;
extern const mp_obj_type_t mp_type_ordereddict ;
extern const mp_obj_type_t mp_type_range ;
extern const mp_obj_type_t mp_type_set ;
extern const mp_obj_type_t mp_type_frozenset ;
extern const mp_obj_type_t mp_type_slice ;
extern const mp_obj_type_t mp_type_zip ;
extern const mp_obj_type_t mp_type_array ;
extern const mp_obj_type_t mp_type_super ;
extern const mp_obj_type_t mp_type_gen_wrap ;
extern const mp_obj_type_t mp_type_native_gen_wrap ;
extern const mp_obj_type_t mp_type_gen_instance ;
extern const mp_obj_type_t mp_type_fun_builtin_0 ;
extern const mp_obj_type_t mp_type_fun_builtin_1 ;
extern const mp_obj_type_t mp_type_fun_builtin_2 ;
extern const mp_obj_type_t mp_type_fun_builtin_3 ;
extern const mp_obj_type_t mp_type_fun_builtin_var ;
extern const mp_obj_type_t mp_type_fun_bc ;
extern const mp_obj_type_t mp_type_module ;
extern const mp_obj_type_t mp_type_staticmethod ;
extern const mp_obj_type_t mp_type_classmethod ;
extern const mp_obj_type_t mp_type_property ;
extern const mp_obj_type_t mp_type_stringio ;
extern const mp_obj_type_t mp_type_bytesio ;
extern const mp_obj_type_t mp_type_reversed ;
extern const mp_obj_type_t mp_type_polymorph_iter ;
// Exceptions
extern const mp_obj_type_t mp_type_BaseException ;
extern const mp_obj_type_t mp_type_ArithmeticError ;
extern const mp_obj_type_t mp_type_AssertionError ;
extern const mp_obj_type_t mp_type_AttributeError ;
extern const mp_obj_type_t mp_type_EOFError ;
extern const mp_obj_type_t mp_type_Exception ;
extern const mp_obj_type_t mp_type_GeneratorExit ;
extern const mp_obj_type_t mp_type_ImportError ;
extern const mp_obj_type_t mp_type_IndentationError ;
extern const mp_obj_type_t mp_type_IndexError ;
extern const mp_obj_type_t mp_type_KeyboardInterrupt ;
extern const mp_obj_type_t mp_type_KeyError ;
extern const mp_obj_type_t mp_type_LookupError ;
extern const mp_obj_type_t mp_type_MemoryError ;
extern const mp_obj_type_t mp_type_NameError ;
extern const mp_obj_type_t mp_type_NotImplementedError ;
extern const mp_obj_type_t mp_type_OSError ;
extern const mp_obj_type_t mp_type_OverflowError ;
extern const mp_obj_type_t mp_type_RuntimeError ;
extern const mp_obj_type_t mp_type_StopAsyncIteration ;
extern const mp_obj_type_t mp_type_StopIteration ;
extern const mp_obj_type_t mp_type_SyntaxError ;
extern const mp_obj_type_t mp_type_SystemExit ;
extern const mp_obj_type_t mp_type_TypeError ;
extern const mp_obj_type_t mp_type_UnicodeError ;
extern const mp_obj_type_t mp_type_ValueError ;
extern const mp_obj_type_t mp_type_ViperTypeError ;
extern const mp_obj_type_t mp_type_ZeroDivisionError ;
// Constant objects, globally accessible: None, False, True
// These should always be accessed via the below macros.
# if MICROPY_OBJ_IMMEDIATE_OBJS
// None is even while False/True are odd so their types can be distinguished with 1 bit.
# define mp_const_none MP_OBJ_NEW_IMMEDIATE_OBJ(0)
# define mp_const_false MP_OBJ_NEW_IMMEDIATE_OBJ(1)
# define mp_const_true MP_OBJ_NEW_IMMEDIATE_OBJ(3)
# else
# define mp_const_none (MP_OBJ_FROM_PTR(&mp_const_none_obj))
# define mp_const_false (MP_OBJ_FROM_PTR(&mp_const_false_obj))
# define mp_const_true (MP_OBJ_FROM_PTR(&mp_const_true_obj))
extern const struct _mp_obj_none_t mp_const_none_obj ;
extern const struct _mp_obj_bool_t mp_const_false_obj ;
extern const struct _mp_obj_bool_t mp_const_true_obj ;
# endif
// Constant objects, globally accessible: b'', (), {}, Ellipsis, NotImplemented, GeneratorExit()
// The below macros are for convenience only.
# define mp_const_empty_bytes (MP_OBJ_FROM_PTR(&mp_const_empty_bytes_obj))
# define mp_const_empty_tuple (MP_OBJ_FROM_PTR(&mp_const_empty_tuple_obj))
# define mp_const_notimplemented (MP_OBJ_FROM_PTR(&mp_const_notimplemented_obj))
extern const struct _mp_obj_str_t mp_const_empty_bytes_obj ;
extern const struct _mp_obj_tuple_t mp_const_empty_tuple_obj ;
extern const struct _mp_obj_dict_t mp_const_empty_dict_obj ;
extern const struct _mp_obj_singleton_t mp_const_ellipsis_obj ;
extern const struct _mp_obj_singleton_t mp_const_notimplemented_obj ;
extern const struct _mp_obj_exception_t mp_const_GeneratorExit_obj ;
// Fixed empty map. Useful when calling keyword-receiving functions
// without any keywords from C, etc.
# define mp_const_empty_map (mp_const_empty_dict_obj.map)
// General API for objects
// These macros are derived from more primitive ones and are used to
// check for more specific object types.
// Note: these are kept as macros because inline functions sometimes use much
// more code space than the equivalent macros, depending on the compiler.
# define mp_obj_is_type(o, t) (mp_obj_is_obj(o) && (((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type == (t))) // this does not work for checking int, str or fun; use below macros for that
# if MICROPY_OBJ_IMMEDIATE_OBJS
// bool's are immediates, not real objects, so test for the 2 possible values.
# define mp_obj_is_bool(o) ((o) == mp_const_false || (o) == mp_const_true)
# else
# define mp_obj_is_bool(o) mp_obj_is_type(o, &mp_type_bool)
# endif
# define mp_obj_is_int(o) (mp_obj_is_small_int(o) || mp_obj_is_type(o, &mp_type_int))
# define mp_obj_is_str(o) (mp_obj_is_qstr(o) || mp_obj_is_type(o, &mp_type_str))
# define mp_obj_is_str_or_bytes(o) (mp_obj_is_qstr(o) || (mp_obj_is_obj(o) && ((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type->binary_op == mp_obj_str_binary_op))
# define mp_obj_is_dict_or_ordereddict(o) (mp_obj_is_obj(o) && ((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type->make_new == mp_obj_dict_make_new)
# define mp_obj_is_fun(o) (mp_obj_is_obj(o) && (((mp_obj_base_t *)MP_OBJ_TO_PTR(o))->type->name == MP_QSTR_function))
mp_obj_t mp_obj_new_type ( qstr name , mp_obj_t bases_tuple , mp_obj_t locals_dict ) ;
static inline mp_obj_t mp_obj_new_bool ( mp_int_t x ) {
return x ? mp_const_true : mp_const_false ;
}
mp_obj_t mp_obj_new_cell ( mp_obj_t obj ) ;
mp_obj_t mp_obj_new_int ( mp_int_t value ) ;
mp_obj_t mp_obj_new_int_from_uint ( mp_uint_t value ) ;
mp_obj_t mp_obj_new_int_from_str_len ( const char * * str , size_t len , bool neg , unsigned int base ) ;
mp_obj_t mp_obj_new_int_from_ll ( long long val ) ; // this must return a multi-precision integer object (or raise an overflow exception)
mp_obj_t mp_obj_new_int_from_ull ( unsigned long long val ) ; // this must return a multi-precision integer object (or raise an overflow exception)
mp_obj_t mp_obj_new_str ( const char * data , size_t len ) ;
mp_obj_t mp_obj_new_str_via_qstr ( const char * data , size_t len ) ;
mp_obj_t mp_obj_new_str_from_vstr ( const mp_obj_type_t * type , vstr_t * vstr ) ;
mp_obj_t mp_obj_new_bytes ( const byte * data , size_t len ) ;
mp_obj_t mp_obj_new_bytearray ( size_t n , void * items ) ;
mp_obj_t mp_obj_new_bytearray_by_ref ( size_t n , void * items ) ;
# if MICROPY_PY_BUILTINS_FLOAT
mp_obj_t mp_obj_new_int_from_float ( mp_float_t val ) ;
mp_obj_t mp_obj_new_complex ( mp_float_t real , mp_float_t imag ) ;
# endif
mp_obj_t mp_obj_new_exception ( const mp_obj_type_t * exc_type ) ;
mp_obj_t mp_obj_new_exception_arg1 ( const mp_obj_type_t * exc_type , mp_obj_t arg ) ;
mp_obj_t mp_obj_new_exception_args ( const mp_obj_type_t * exc_type , size_t n_args , const mp_obj_t * args ) ;
mp_obj_t mp_obj_new_exception_msg ( const mp_obj_type_t * exc_type , mp_rom_error_text_t msg ) ;
mp_obj_t mp_obj_new_exception_msg_varg ( const mp_obj_type_t * exc_type , mp_rom_error_text_t fmt , . . . ) ; // counts args by number of % symbols in fmt, excluding %%; can only handle void* sizes (ie no float/double!)
# ifdef va_start
mp_obj_t mp_obj_new_exception_msg_vlist ( const mp_obj_type_t * exc_type , mp_rom_error_text_t fmt , va_list arg ) ; // same fmt restrictions as above
# endif
mp_obj_t mp_obj_new_fun_bc ( mp_obj_t def_args , mp_obj_t def_kw_args , const byte * code , const mp_uint_t * const_table ) ;
mp_obj_t mp_obj_new_fun_native ( mp_obj_t def_args_in , mp_obj_t def_kw_args , const void * fun_data , const mp_uint_t * const_table ) ;
mp_obj_t mp_obj_new_fun_asm ( size_t n_args , const void * fun_data , mp_uint_t type_sig ) ;
mp_obj_t mp_obj_new_gen_wrap ( mp_obj_t fun ) ;
mp_obj_t mp_obj_new_closure ( mp_obj_t fun , size_t n_closed , const mp_obj_t * closed ) ;
mp_obj_t mp_obj_new_tuple ( size_t n , const mp_obj_t * items ) ;
mp_obj_t mp_obj_new_list ( size_t n , mp_obj_t * items ) ;
mp_obj_t mp_obj_new_dict ( size_t n_args ) ;
mp_obj_t mp_obj_new_set ( size_t n_args , mp_obj_t * items ) ;
mp_obj_t mp_obj_new_slice ( mp_obj_t start , mp_obj_t stop , mp_obj_t step ) ;
mp_obj_t mp_obj_new_bound_meth ( mp_obj_t meth , mp_obj_t self ) ;
mp_obj_t mp_obj_new_getitem_iter ( mp_obj_t * args , mp_obj_iter_buf_t * iter_buf ) ;
mp_obj_t mp_obj_new_module ( qstr module_name ) ;
mp_obj_t mp_obj_new_memoryview ( byte typecode , size_t nitems , void * items ) ;
const mp_obj_type_t * mp_obj_get_type ( mp_const_obj_t o_in ) ;
const char * mp_obj_get_type_str ( mp_const_obj_t o_in ) ;
bool mp_obj_is_subclass_fast ( mp_const_obj_t object , mp_const_obj_t classinfo ) ; // arguments should be type objects
mp_obj_t mp_obj_cast_to_native_base ( mp_obj_t self_in , mp_const_obj_t native_type ) ;
void mp_obj_print_helper ( const mp_print_t * print , mp_obj_t o_in , mp_print_kind_t kind ) ;
void mp_obj_print ( mp_obj_t o , mp_print_kind_t kind ) ;
void mp_obj_print_exception ( const mp_print_t * print , mp_obj_t exc ) ;
bool mp_obj_is_true ( mp_obj_t arg ) ;
bool mp_obj_is_callable ( mp_obj_t o_in ) ;
mp_obj_t mp_obj_equal_not_equal ( mp_binary_op_t op , mp_obj_t o1 , mp_obj_t o2 ) ;
bool mp_obj_equal ( mp_obj_t o1 , mp_obj_t o2 ) ;
static inline bool mp_obj_is_integer ( mp_const_obj_t o ) {
return mp_obj_is_int ( o ) | | mp_obj_is_bool ( o ) ;
} // returns true if o is bool, small int or long int
mp_int_t mp_obj_get_int ( mp_const_obj_t arg ) ;
mp_int_t mp_obj_get_int_truncated ( mp_const_obj_t arg ) ;
bool mp_obj_get_int_maybe ( mp_const_obj_t arg , mp_int_t * value ) ;
# if MICROPY_PY_BUILTINS_FLOAT
mp_float_t mp_obj_get_float ( mp_obj_t self_in ) ;
bool mp_obj_get_float_maybe ( mp_obj_t arg , mp_float_t * value ) ;
void mp_obj_get_complex ( mp_obj_t self_in , mp_float_t * real , mp_float_t * imag ) ;
bool mp_obj_get_complex_maybe ( mp_obj_t self_in , mp_float_t * real , mp_float_t * imag ) ;
# endif
void mp_obj_get_array ( mp_obj_t o , size_t * len , mp_obj_t * * items ) ; // *items may point inside a GC block
void mp_obj_get_array_fixed_n ( mp_obj_t o , size_t len , mp_obj_t * * items ) ; // *items may point inside a GC block
size_t mp_get_index ( const mp_obj_type_t * type , size_t len , mp_obj_t index , bool is_slice ) ;
mp_obj_t mp_obj_id ( mp_obj_t o_in ) ;
mp_obj_t mp_obj_len ( mp_obj_t o_in ) ;
mp_obj_t mp_obj_len_maybe ( mp_obj_t o_in ) ; // may return MP_OBJ_NULL
mp_obj_t mp_obj_subscr ( mp_obj_t base , mp_obj_t index , mp_obj_t val ) ;
mp_obj_t mp_generic_unary_op ( mp_unary_op_t op , mp_obj_t o_in ) ;
// cell
mp_obj_t mp_obj_cell_get ( mp_obj_t self_in ) ;
void mp_obj_cell_set ( mp_obj_t self_in , mp_obj_t obj ) ;
// int
// For long int, returns value truncated to mp_int_t
mp_int_t mp_obj_int_get_truncated ( mp_const_obj_t self_in ) ;
// Will raise exception if value doesn't fit into mp_int_t
mp_int_t mp_obj_int_get_checked ( mp_const_obj_t self_in ) ;
// Will raise exception if value is negative or doesn't fit into mp_uint_t
mp_uint_t mp_obj_int_get_uint_checked ( mp_const_obj_t self_in ) ;
// exception
# define mp_obj_is_native_exception_instance(o) (mp_obj_get_type(o)->make_new == mp_obj_exception_make_new)
bool mp_obj_is_exception_type ( mp_obj_t self_in ) ;
bool mp_obj_is_exception_instance ( mp_obj_t self_in ) ;
bool mp_obj_exception_match ( mp_obj_t exc , mp_const_obj_t exc_type ) ;
void mp_obj_exception_clear_traceback ( mp_obj_t self_in ) ;
void mp_obj_exception_add_traceback ( mp_obj_t self_in , qstr file , size_t line , qstr block ) ;
void mp_obj_exception_get_traceback ( mp_obj_t self_in , size_t * n , size_t * * values ) ;
mp_obj_t mp_obj_exception_get_value ( mp_obj_t self_in ) ;
mp_obj_t mp_obj_exception_make_new ( const mp_obj_type_t * type_in , size_t n_args , size_t n_kw , const mp_obj_t * args ) ;
mp_obj_t mp_alloc_emergency_exception_buf ( mp_obj_t size_in ) ;
void mp_init_emergency_exception_buf ( void ) ;
// str
bool mp_obj_str_equal ( mp_obj_t s1 , mp_obj_t s2 ) ;
qstr mp_obj_str_get_qstr ( mp_obj_t self_in ) ; // use this if you will anyway convert the string to a qstr
const char * mp_obj_str_get_str ( mp_obj_t self_in ) ; // use this only if you need the string to be null terminated
const char * mp_obj_str_get_data ( mp_obj_t self_in , size_t * len ) ;
mp_obj_t mp_obj_str_intern ( mp_obj_t str ) ;
mp_obj_t mp_obj_str_intern_checked ( mp_obj_t obj ) ;
void mp_str_print_quoted ( const mp_print_t * print , const byte * str_data , size_t str_len , bool is_bytes ) ;
# if MICROPY_PY_BUILTINS_FLOAT
// float
# if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
static inline float mp_obj_get_float_to_f ( mp_obj_t o ) {
return mp_obj_get_float ( o ) ;
}
static inline double mp_obj_get_float_to_d ( mp_obj_t o ) {
return ( double ) mp_obj_get_float ( o ) ;
}
static inline mp_obj_t mp_obj_new_float_from_f ( float o ) {
return mp_obj_new_float ( o ) ;
}
static inline mp_obj_t mp_obj_new_float_from_d ( double o ) {
return mp_obj_new_float ( ( mp_float_t ) o ) ;
}
# elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
static inline float mp_obj_get_float_to_f ( mp_obj_t o ) {
return ( float ) mp_obj_get_float ( o ) ;
}
static inline double mp_obj_get_float_to_d ( mp_obj_t o ) {
return mp_obj_get_float ( o ) ;
}
static inline mp_obj_t mp_obj_new_float_from_f ( float o ) {
return mp_obj_new_float ( ( mp_float_t ) o ) ;
}
static inline mp_obj_t mp_obj_new_float_from_d ( double o ) {
return mp_obj_new_float ( o ) ;
}
# endif
# if MICROPY_FLOAT_HIGH_QUALITY_HASH
mp_int_t mp_float_hash ( mp_float_t val ) ;
# else
static inline mp_int_t mp_float_hash ( mp_float_t val ) {
return ( mp_int_t ) val ;
}
# endif
mp_obj_t mp_obj_float_binary_op ( mp_binary_op_t op , mp_float_t lhs_val , mp_obj_t rhs ) ; // can return MP_OBJ_NULL if op not supported
// complex
void mp_obj_complex_get ( mp_obj_t self_in , mp_float_t * real , mp_float_t * imag ) ;
mp_obj_t mp_obj_complex_binary_op ( mp_binary_op_t op , mp_float_t lhs_real , mp_float_t lhs_imag , mp_obj_t rhs_in ) ; // can return MP_OBJ_NULL if op not supported
# else
# define mp_obj_is_float(o) (false)
# endif
// tuple
void mp_obj_tuple_get ( mp_obj_t self_in , size_t * len , mp_obj_t * * items ) ;
void mp_obj_tuple_del ( mp_obj_t self_in ) ;
mp_int_t mp_obj_tuple_hash ( mp_obj_t self_in ) ;
// list
mp_obj_t mp_obj_list_append ( mp_obj_t self_in , mp_obj_t arg ) ;
mp_obj_t mp_obj_list_remove ( mp_obj_t self_in , mp_obj_t value ) ;
void mp_obj_list_get ( mp_obj_t self_in , size_t * len , mp_obj_t * * items ) ;
void mp_obj_list_set_len ( mp_obj_t self_in , size_t len ) ;
void mp_obj_list_store ( mp_obj_t self_in , mp_obj_t index , mp_obj_t value ) ;
mp_obj_t mp_obj_list_sort ( size_t n_args , const mp_obj_t * args , mp_map_t * kwargs ) ;
// dict
typedef struct _mp_obj_dict_t {
mp_obj_base_t base ;
mp_map_t map ;
} mp_obj_dict_t ;
mp_obj_t mp_obj_dict_make_new ( const mp_obj_type_t * type , size_t n_args , size_t n_kw , const mp_obj_t * args ) ;
void mp_obj_dict_init ( mp_obj_dict_t * dict , size_t n_args ) ;
size_t mp_obj_dict_len ( mp_obj_t self_in ) ;
mp_obj_t mp_obj_dict_get ( mp_obj_t self_in , mp_obj_t index ) ;
mp_obj_t mp_obj_dict_store ( mp_obj_t self_in , mp_obj_t key , mp_obj_t value ) ;
mp_obj_t mp_obj_dict_delete ( mp_obj_t self_in , mp_obj_t key ) ;
mp_obj_t mp_obj_dict_copy ( mp_obj_t self_in ) ;
static inline mp_map_t * mp_obj_dict_get_map ( mp_obj_t dict ) {
return & ( ( mp_obj_dict_t * ) MP_OBJ_TO_PTR ( dict ) ) - > map ;
}
// set
void mp_obj_set_store ( mp_obj_t self_in , mp_obj_t item ) ;
// slice indexes resolved to particular sequence
typedef struct {
mp_int_t start ;
mp_int_t stop ;
mp_int_t step ;
} mp_bound_slice_t ;
// slice
typedef struct _mp_obj_slice_t {
mp_obj_base_t base ;
mp_obj_t start ;
mp_obj_t stop ;
mp_obj_t step ;
} mp_obj_slice_t ;
void mp_obj_slice_indices ( mp_obj_t self_in , mp_int_t length , mp_bound_slice_t * result ) ;
// functions
typedef struct _mp_obj_fun_builtin_fixed_t {
mp_obj_base_t base ;
union {
mp_fun_0_t _0 ;
mp_fun_1_t _1 ;
mp_fun_2_t _2 ;
mp_fun_3_t _3 ;
} fun ;
} mp_obj_fun_builtin_fixed_t ;
typedef struct _mp_obj_fun_builtin_var_t {
mp_obj_base_t base ;
uint32_t sig ; // see MP_OBJ_FUN_MAKE_SIG
union {
mp_fun_var_t var ;
mp_fun_kw_t kw ;
} fun ;
} mp_obj_fun_builtin_var_t ;
qstr mp_obj_fun_get_name ( mp_const_obj_t fun ) ;
qstr mp_obj_code_get_name ( const byte * code_info ) ;
mp_obj_t mp_identity ( mp_obj_t self ) ;
MP_DECLARE_CONST_FUN_OBJ_1 ( mp_identity_obj ) ;
mp_obj_t mp_identity_getiter ( mp_obj_t self , mp_obj_iter_buf_t * iter_buf ) ;
// module
typedef struct _mp_obj_module_t {
mp_obj_base_t base ;
mp_obj_dict_t * globals ;
} mp_obj_module_t ;
static inline mp_obj_dict_t * mp_obj_module_get_globals ( mp_obj_t module ) {
return ( ( mp_obj_module_t * ) MP_OBJ_TO_PTR ( module ) ) - > globals ;
}
// check if given module object is a package
bool mp_obj_is_package ( mp_obj_t module ) ;
// staticmethod and classmethod types; defined here so we can make const versions
// this structure is used for instances of both staticmethod and classmethod
typedef struct _mp_obj_static_class_method_t {
mp_obj_base_t base ;
mp_obj_t fun ;
} mp_obj_static_class_method_t ;
typedef struct _mp_rom_obj_static_class_method_t {
mp_obj_base_t base ;
mp_rom_obj_t fun ;
} mp_rom_obj_static_class_method_t ;
// property
const mp_obj_t * mp_obj_property_get ( mp_obj_t self_in ) ;
// sequence helpers
void mp_seq_multiply ( const void * items , size_t item_sz , size_t len , size_t times , void * dest ) ;
# if MICROPY_PY_BUILTINS_SLICE
bool mp_seq_get_fast_slice_indexes ( mp_uint_t len , mp_obj_t slice , mp_bound_slice_t * indexes ) ;
# endif
# define mp_seq_copy(dest, src, len, item_t) memcpy(dest, src, len * sizeof(item_t))
# define mp_seq_cat(dest, src1, len1, src2, len2, item_t) { memcpy(dest, src1, (len1) * sizeof(item_t)); memcpy(dest + (len1), src2, (len2) * sizeof(item_t)); }
bool mp_seq_cmp_bytes ( mp_uint_t op , const byte * data1 , size_t len1 , const byte * data2 , size_t len2 ) ;
bool mp_seq_cmp_objs ( mp_uint_t op , const mp_obj_t * items1 , size_t len1 , const mp_obj_t * items2 , size_t len2 ) ;
mp_obj_t mp_seq_index_obj ( const mp_obj_t * items , size_t len , size_t n_args , const mp_obj_t * args ) ;
mp_obj_t mp_seq_count_obj ( const mp_obj_t * items , size_t len , mp_obj_t value ) ;
mp_obj_t mp_seq_extract_slice ( size_t len , const mp_obj_t * seq , mp_bound_slice_t * indexes ) ;
// Helper to clear stale pointers from allocated, but unused memory, to preclude GC problems
# define mp_seq_clear(start, len, alloc_len, item_sz) memset((byte *)(start) + (len) * (item_sz), 0, ((alloc_len) - (len)) * (item_sz))
// Note: dest and slice regions may overlap
# define mp_seq_replace_slice_no_grow(dest, dest_len, beg, end, slice, slice_len, item_sz) \
memmove ( ( ( char * ) dest ) + ( beg ) * ( item_sz ) , slice , slice_len * ( item_sz ) ) ; \
memmove ( ( ( char * ) dest ) + ( beg + slice_len ) * ( item_sz ) , ( ( char * ) dest ) + ( end ) * ( item_sz ) , ( dest_len - end ) * ( item_sz ) ) ;
// Note: dest and slice regions may overlap
# define mp_seq_replace_slice_grow_inplace(dest, dest_len, beg, end, slice, slice_len, len_adj, item_sz) \
memmove ( ( ( char * ) dest ) + ( beg + slice_len ) * ( item_sz ) , ( ( char * ) dest ) + ( end ) * ( item_sz ) , ( ( dest_len ) + ( len_adj ) - ( ( beg ) + ( slice_len ) ) ) * ( item_sz ) ) ; \
memmove ( ( ( char * ) dest ) + ( beg ) * ( item_sz ) , slice , slice_len * ( item_sz ) ) ;
// Provide translation for legacy API
# define MP_OBJ_IS_SMALL_INT mp_obj_is_small_int
# define MP_OBJ_IS_QSTR mp_obj_is_qstr
# define MP_OBJ_IS_OBJ mp_obj_is_obj
# define MP_OBJ_IS_INT mp_obj_is_int
# define MP_OBJ_IS_TYPE mp_obj_is_type
# define MP_OBJ_IS_STR mp_obj_is_str
# define MP_OBJ_IS_STR_OR_BYTES mp_obj_is_str_or_bytes
# define MP_OBJ_IS_FUN mp_obj_is_fun
# define MP_MAP_SLOT_IS_FILLED mp_map_slot_is_filled
# define MP_SET_SLOT_IS_FILLED mp_set_slot_is_filled
# endif // MICROPY_INCLUDED_PY_OBJ_H