/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 SummerGift * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/mphal.h" #include "py/mperrno.h" #include "py/stream.h" #include #include "machine_uart.h" #include "rtdevice.h" #ifdef MICROPYTHON_USING_MACHINE_UART #ifndef RT_USING_SERIAL #error "Please define the RT_USING_SERIAL on 'rtconfig.h'" #endif typedef struct _machine_uart_obj_t { mp_obj_base_t base; struct rt_serial_device *uart_device; }machine_uart_obj_t; STATIC void machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_uart_obj_t *self = (machine_uart_obj_t*) self_in; mp_printf(print, "uart( device port : %s,baud_rate = %d, data_bits = %d, parity = %d, stop_bits = %d )", self->uart_device->parent.parent.name, self->uart_device->config.baud_rate, self->uart_device->config.data_bits, self->uart_device->config.parity, self->uart_device->config.stop_bits); } STATIC mp_obj_t machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); char uart_dev_name[RT_NAME_MAX]; snprintf(uart_dev_name, sizeof(uart_dev_name), "uart%d", mp_obj_get_int(args[0])); struct rt_serial_device *rt_serial_device = (struct rt_serial_device *) rt_device_find(uart_dev_name); if (rt_serial_device == RT_NULL || rt_serial_device->parent.type != RT_Device_Class_Char) { mp_printf(&mp_plat_print, "ERROR: UART device %s not found!\n", uart_dev_name); nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) doesn't exist", uart_dev_name)); } rt_err_t result; result = rt_device_open((rt_device_t)rt_serial_device, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_INT_RX ); if (result != RT_EOK) { mp_printf(&mp_plat_print, "ERROR: UART device %s can't open!\n", uart_dev_name); nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) can't open", uart_dev_name)); } // create new uart object machine_uart_obj_t *self = m_new_obj(machine_uart_obj_t); self->base.type = &machine_uart_type; self->uart_device = rt_serial_device; return (mp_obj_t) self; } /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64) /// /// Initialise the UART bus with the given parameters: /// /// - `baudrate` is the clock rate. /// - `bits` is the number of bits per byte, 7, 8 or 9. /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). /// - `stop` is the number of stop bits, 1 or 2. /// - `timeout` is the timeout in milliseconds to wait for the first character. /// - `timeout_char` is the timeout in milliseconds to wait between characters. /// - `flow` is RTS | CTS where RTS == 256, CTS == 512 /// - `read_buf_len` is the character length of the read buffer (0 to disable). /// STATIC mp_obj_t machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, // rt-thread does not support { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, }; // parse args struct { mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, read_buf_len; } args; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t*)&args); // set the UART configuration values struct rt_serial_device *uart_p = self->uart_device; struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT; // baudrate config.baud_rate = args.baudrate.u_int; // parity mp_int_t bits = args.bits.u_int; if (args.parity.u_obj == mp_const_none) { config.parity = PARITY_NONE; } else { mp_int_t parity = mp_obj_get_int(args.parity.u_obj); config.parity = (parity & 1) ? PARITY_ODD : PARITY_EVEN; //bits += 1; // STs convention has bits including parity, not all mcu } // number of bits if (bits == 8) { config.data_bits = DATA_BITS_8; } else if (bits == 9) { config.data_bits = DATA_BITS_9; } else if (bits == 7) { config.data_bits = DATA_BITS_7; } else { mp_raise_ValueError("unsupported combination of bits and parity"); } // stop bits switch (args.stop.u_int) { case 1: config.stop_bits = STOP_BITS_1; break; default: config.stop_bits = STOP_BITS_2; break; } //buffer size #if defined(RT_USING_SERIAL_V1) config.bufsz = args.read_buf_len.u_int; #elif defined(RT_USING_SERIAL_V2) config.rx_bufsz = args.read_buf_len.u_int; config.tx_bufsz = args.read_buf_len.u_int; #endif rt_device_control((struct rt_device *) uart_p, RT_DEVICE_CTRL_CONFIG, &config); return mp_const_none; } STATIC mp_obj_t machine_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return machine_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_uart_init_obj, 1, machine_uart_init); STATIC mp_obj_t machine_uart_deinit(mp_obj_t self_in) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_deinit_obj, machine_uart_deinit); #define RETRY_TIMES 500 STATIC mp_obj_t machine_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { machine_uart_obj_t *self = self_in; uint16_t data = mp_obj_get_int(char_in); rt_size_t len = 0; rt_uint32_t timeout = 0; do { len = rt_device_write((struct rt_device *)(self->uart_device), 0, &data, 1); timeout++; } while (len != 1 && timeout < RETRY_TIMES); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_uart_writechar_obj, machine_uart_writechar); #define UART_RX_EVENT (1 << 0) static struct rt_event event; STATIC mp_obj_t machine_uart_readchar(mp_obj_t self_in) { machine_uart_obj_t *self = self_in; rt_uint32_t e; rt_uint8_t ch; while (rt_device_read((struct rt_device *)(self->uart_device), 0, &ch, 1) != 1) { rt_event_recv(&event, UART_RX_EVENT, RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &e); } return MP_OBJ_NEW_SMALL_INT(ch); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_readchar_obj, machine_uart_readchar); STATIC const mp_rom_map_elem_t machine_uart_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_uart_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_uart_deinit_obj) }, // { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&machine_uart_any_obj) }, /// \method read([nbytes]) { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, /// \method readline() { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)}, /// \method readinto(buf[, nbytes]) { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, /// \method write(buf) { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&machine_uart_writechar_obj) }, { MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&machine_uart_readchar_obj) }, // { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) }, // class constants // { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, // { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, }; STATIC MP_DEFINE_CONST_DICT(machine_uart_locals_dict, machine_uart_locals_dict_table); STATIC mp_uint_t machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = self_in; byte *buf = buf_in; //TODO dfs sync read //MP_RTT_NOT_IMPL_PRINT; return rt_device_read((struct rt_device *)(self->uart_device), -1, buf, size); } STATIC mp_uint_t machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = self_in; const byte *buf = buf_in; //TODO dfs sync write //MP_RTT_NOT_IMPL_PRINT; return rt_device_write((struct rt_device *)(self->uart_device), -1, buf, size); } STATIC mp_uint_t machine_uart_ioctl(mp_obj_t obj, mp_uint_t request, uintptr_t arg, int *errcode) { return NULL; } STATIC const mp_stream_p_t uart_stream_p = { .read = machine_uart_read, .write = machine_uart_write, .ioctl = machine_uart_ioctl, .is_text = false, }; const mp_obj_type_t machine_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = machine_uart_print, .make_new = machine_uart_make_new, .getiter = mp_identity_getiter, .iternext = mp_stream_unbuffered_iter, .protocol = &uart_stream_p, .locals_dict = (mp_obj_dict_t*)&machine_uart_locals_dict, }; #endif // MICROPYTHON_USING_MACHINE_UART