/* * Copyright (c) 2023, ArtInChip Technology Co., Ltd * * SPDX-License-Identifier: Apache-2.0 * * Authors: xuan.wen */ #include #include #include #include "spinand.h" #include "spinand_block.h" #include "spinand_parts.h" #ifdef AIC_NFTL_SUPPORT #include #endif struct spinand_blk_device { struct rt_device parent; struct rt_device_blk_geometry geometry; struct rt_mtd_nand_device *mtd_device; #ifdef AIC_NFTL_SUPPORT struct nftl_api_handler_t *nftl_handler; #endif char name[32]; u8 *pagebuf; }; #ifdef AIC_NFTL_SUPPORT rt_size_t rt_spinand_read_ftl_debug(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { rt_size_t ret; struct spinand_blk_device *part = (struct spinand_blk_device *)dev; ret = nftl_api_read(part->nftl_handler, pos, size, buffer); if (ret == 0) { return size; } else { return -1; } } rt_size_t rt_spinand_write_ftl_debug(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { rt_size_t ret; struct spinand_blk_device *part = (struct spinand_blk_device *)dev; ret = nftl_api_write(part->nftl_handler, pos, size, (u8 *)buffer); if (ret == 0) { return size; } else { return -1; } } rt_err_t rt_spinand_init_ftl_debug(rt_device_t dev) { struct spinand_blk_device *part = (struct spinand_blk_device *)dev; part->nftl_handler = aicos_malloc(MEM_CMA, sizeof(struct nftl_api_handler_t)); //part->nftl_handler = (struct nftl_api_handler_t *)rt_malloc(sizeof(struct nftl_api_handler_t)); if (!part->nftl_handler) { pr_err( "Error: no memory for create SPI NAND block device . nftl_handler"); return RT_ERROR; } memset(part->nftl_handler, 0, sizeof(struct nftl_api_handler_t)); part->nftl_handler->priv_mtd = (void *)part->mtd_device; part->nftl_handler->nandt = aicos_malloc(MEM_CMA, sizeof(struct nftl_api_nand_t)); part->nftl_handler->nandt->page_size = part->mtd_device->page_size; part->nftl_handler->nandt->oob_size = part->mtd_device->oob_size; part->nftl_handler->nandt->pages_per_block = part->mtd_device->pages_per_block; part->nftl_handler->nandt->block_total = part->mtd_device->block_total; part->nftl_handler->nandt->block_start = part->mtd_device->block_start; part->nftl_handler->nandt->block_end = part->mtd_device->block_end; if (nftl_api_init(part->nftl_handler, dev->device_id)) { pr_err("[NE]nftl_initialize failed\n"); return RT_ERROR; } return RT_EOK; } rt_err_t rt_spinand_ftl_close(rt_device_t dev) { struct spinand_blk_device *part = (struct spinand_blk_device *)dev; return nftl_api_write_cache(part->nftl_handler, 0xffff); } #endif rt_size_t rt_spinand_read_nonftl_debug(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { int ret = 0; struct spinand_blk_device *part = (struct spinand_blk_device *)dev; struct rt_mtd_nand_device *device = part->mtd_device; int start_page; u8 *copybuf = NULL; u16 copysize; rt_size_t sectors_read = 0; u8 sectors_per_page = device->page_size / part->geometry.bytes_per_sector; rt_uint32_t block; assert(part != RT_NULL); pr_debug("pos = %d, size = %d\n", pos, size); start_page = pos / sectors_per_page + device->block_start * device->pages_per_block; block = start_page / device->pages_per_block; /* Search for the first good block after the given offset */ while (device->ops->check_block(device, block)) { pr_warn("Find a bad block, pos adjust to the next block\n"); pos += device->pages_per_block * sectors_per_page; block++; } start_page = pos / sectors_per_page + device->block_start * device->pages_per_block; /*pos is not aligned with page, read unalign part first*/ if (pos % sectors_per_page) { memset(part->pagebuf, 0xFF, device->page_size); ret = device->ops->read_page(device, start_page, part->pagebuf, device->page_size, NULL, 0); if (ret != RT_EOK) { pr_err("read_page failed!\n"); return -RT_ERROR; } copybuf = part->pagebuf + (pos % sectors_per_page) * part->geometry.bytes_per_sector; if (size > (sectors_per_page - pos % sectors_per_page)) { copysize = (sectors_per_page - pos % sectors_per_page) * part->geometry.bytes_per_sector; sectors_read += (sectors_per_page - pos % sectors_per_page); } else { copysize = size * part->geometry.bytes_per_sector; sectors_read += size; } rt_memcpy(buffer, copybuf, copysize); buffer += copysize; start_page++; } if (size - sectors_read == 0) return size; #ifdef AIC_SPINAND_CONT_READ if ((size - sectors_read) > sectors_per_page) { rt_uint8_t *data_ptr = RT_NULL; rt_uint32_t copydata = (size - sectors_read) * part->geometry.bytes_per_sector; data_ptr = (rt_uint8_t *)rt_malloc_align(copydata, CACHE_LINE_SIZE); if (data_ptr == RT_NULL) { pr_err("data_ptr: no memory\n"); goto exit_rt_spinand_read_malloc; } rt_memset(data_ptr, 0, copydata); ret = device->ops->continuous_read(device, start_page, data_ptr, copydata); if (ret != RT_EOK) { pr_err("continuous_read failed!\n"); goto exit_rt_spinand_read; } rt_memcpy(buffer, data_ptr, copydata); if (data_ptr) rt_free_align(data_ptr); return size; exit_rt_spinand_read: if (data_ptr) rt_free_align(data_ptr); } exit_rt_spinand_read_malloc: #endif /*pos is aligned with page*/ while (size > sectors_read) { if (start_page / device->pages_per_block != block) { block = start_page / device->pages_per_block; while (device->ops->check_block(device, block)) { pr_warn("Find a bad block, pos adjust to the next block\n"); block++; start_page += device->pages_per_block; } } memset(part->pagebuf, 0xFF, device->page_size); ret = device->ops->read_page(device, start_page, part->pagebuf, device->page_size, NULL, 0); if (ret != RT_EOK) { pr_err("read_page failed!\n"); return -RT_ERROR; } if ((size - sectors_read) > sectors_per_page) { copysize = sectors_per_page * part->geometry.bytes_per_sector; sectors_read += sectors_per_page; } else { copysize = (size - sectors_read) * part->geometry.bytes_per_sector; sectors_read += (size - sectors_read); } rt_memcpy(buffer, part->pagebuf, copysize); buffer += copysize; start_page++; } return size; } rt_size_t rt_spinand_write_nonftl_debug(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { return size; } rt_err_t rt_spinand_init_nonftl_debug(rt_device_t dev) { return 0; } rt_err_t rt_spinand_nonftl_close(rt_device_t dev) { return 0; } static rt_err_t rt_spinand_init(rt_device_t dev) { struct spinand_blk_device *part = (struct spinand_blk_device *)dev; if (strncmp(part->name, "blk_data", strlen("blk_data")) == 0) { #ifdef AIC_NFTL_SUPPORT return rt_spinand_init_ftl_debug(dev); #else return rt_spinand_init_nonftl_debug(dev); #endif } else { return rt_spinand_init_nonftl_debug(dev); } } static rt_err_t rt_spinand_control(rt_device_t dev, int cmd, void *args) { struct spinand_blk_device *part = (struct spinand_blk_device *)dev; assert(part != RT_NULL); if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME) { struct rt_device_blk_geometry *geometry; geometry = (struct rt_device_blk_geometry *)args; if (geometry == RT_NULL) { return -RT_ERROR; } memcpy(geometry, &part->geometry, sizeof(struct rt_device_blk_geometry)); } else if (cmd == RT_DEVICE_CTRL_BLK_SYNC) { if (strncmp(part->name, "blk_data", strlen("blk_data")) == 0) { #ifdef AIC_NFTL_SUPPORT nftl_api_write_cache(part->nftl_handler, 0xffff); #else pr_warn("Invaild cmd = %d\n", cmd); #endif } else { pr_warn("Invaild cmd = %d\n", cmd); } } else { pr_warn("Invaild cmd = %d\n", cmd); } return RT_EOK; } static rt_size_t rt_spinand_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { struct spinand_blk_device *part = (struct spinand_blk_device *)dev; if (strncmp(part->name, "blk_data", strlen("blk_data")) == 0) { #ifdef AIC_NFTL_SUPPORT return rt_spinand_write_ftl_debug(dev, pos, buffer, size); #else return rt_spinand_write_nonftl_debug(dev, pos, buffer, size); #endif } else { return rt_spinand_write_nonftl_debug(dev, pos, buffer, size); } } static rt_size_t rt_spinand_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { struct spinand_blk_device *part = (struct spinand_blk_device *)dev; if (strncmp(part->name, "blk_data", strlen("blk_data")) == 0) { #ifdef AIC_NFTL_SUPPORT return rt_spinand_read_ftl_debug(dev, pos, buffer, size); #else return rt_spinand_read_nonftl_debug(dev, pos, buffer, size); #endif } else { return rt_spinand_read_nonftl_debug(dev, pos, buffer, size); } } static rt_err_t rt_spinand_close(rt_device_t dev) { struct spinand_blk_device *part = (struct spinand_blk_device *)dev; if (strncmp(part->name, "blk_data", strlen("blk_data")) == 0) { #ifdef AIC_NFTL_SUPPORT return rt_spinand_ftl_close(dev); #else return rt_spinand_nonftl_close(dev); #endif } else { return rt_spinand_nonftl_close(dev); } } #ifdef RT_USING_DEVICE_OPS static struct rt_device_ops blk_dev_ops = { rt_spinand_init, RT_NULL, rt_spinand_close, rt_spinand_read, rt_spinand_write, rt_spinand_control }; #endif int rt_blk_nand_register_device(const char *name, struct rt_mtd_nand_device *device) { char str[32] = { 0 }; struct spinand_blk_device *blk_dev; blk_dev = (struct spinand_blk_device *)rt_malloc( sizeof(struct spinand_blk_device)); if (!blk_dev) { pr_err("Error: no memory for create SPI NAND block device"); } blk_dev->mtd_device = device; blk_dev->parent.type = RT_Device_Class_Block; #ifdef RT_USING_DEVICE_OPS blk_dev->parent.ops = &blk_dev_ops; #else /* register device */ blk_dev->parent.init = rt_spinand_init; blk_dev->parent.open = NULL; blk_dev->parent.close = rt_spinand_close; blk_dev->parent.read = rt_spinand_read; blk_dev->parent.write = rt_spinand_write; blk_dev->parent.control = rt_spinand_control; #endif blk_dev->geometry.bytes_per_sector = 512; blk_dev->geometry.block_size = blk_dev->geometry.bytes_per_sector; blk_dev->geometry.sector_count = device->block_total * device->pages_per_block * device->page_size / blk_dev->geometry.bytes_per_sector; blk_dev->pagebuf = aicos_malloc_align(0, device->page_size, CACHE_LINE_SIZE); if (!blk_dev->pagebuf) { pr_err("malloc buf failed\n"); return -1; } rt_sprintf(str, "blk_%s", name); memset(blk_dev->name, 0, 32); rt_memcpy(blk_dev->name, str, 32); /* register the device */ rt_device_register(RT_DEVICE(blk_dev), str, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE); return 0; }