/* * copyright (c) 2006 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * common internal and external API header */ #ifndef AVUTIL_COMMON_H #define AVUTIL_COMMON_H #include #include #include #include #include #include #include #include #if AV_HAVE_BIGENDIAN # define AV_NE(be, le) (be) #else # define AV_NE(be, le) (le) #endif //rounded division & shift #define RSHIFT(a,b) ((a) > 0 ? ((a) + ((1<<(b))>>1))>>(b) : ((a) + ((1<<(b))>>1)-1)>>(b)) /* assume b>0 */ #define ROUNDED_DIV(a,b) (((a)>=0 ? (a) + ((b)>>1) : (a) - ((b)>>1))/(b)) /* Fast a/(1<=0 and b>=0 */ #define AV_CEIL_RSHIFT(a,b) (!av_builtin_constant_p(b) ? -((-(a)) >> (b)) \ : ((a) + (1<<(b)) - 1) >> (b)) /* Backwards compat. */ #define FF_CEIL_RSHIFT AV_CEIL_RSHIFT #define FFUDIV(a,b) (((a)>0 ?(a):(a)-(b)+1) / (b)) #define FFUMOD(a,b) ((a)-(b)*FFUDIV(a,b)) /** * Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they * are not representable as absolute values of their type. This is the same * as with *abs() * @see FFNABS() */ #define FFABS(a) ((a) >= 0 ? (a) : (-(a))) #define FFSIGN(a) ((a) > 0 ? 1 : -1) /** * Negative Absolute value. * this works for all integers of all types. * As with many macros, this evaluates its argument twice, it thus must not have * a sideeffect, that is FFNABS(x++) has undefined behavior. */ #define FFNABS(a) ((a) <= 0 ? (a) : (-(a))) /** * Comparator. * For two numerical expressions x and y, gives 1 if x > y, -1 if x < y, and 0 * if x == y. This is useful for instance in a qsort comparator callback. * Furthermore, compilers are able to optimize this to branchless code, and * there is no risk of overflow with signed types. * As with many macros, this evaluates its argument multiple times, it thus * must not have a side-effect. */ #define FFDIFFSIGN(x,y) (((x)>(y)) - ((x)<(y))) #define FFMAX(a,b) ((a) > (b) ? (a) : (b)) #define FFMAX3(a,b,c) FFMAX(FFMAX(a,b),c) #define FFMIN(a,b) ((a) > (b) ? (b) : (a)) #define FFMIN3(a,b,c) FFMIN(FFMIN(a,b),c) #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0) #define FF_ARRAY_ELEMS(a) (sizeof(a) / sizeof((a)[0])) #define AAC_RENAME(x) x typedef float INTFLOAT; #endif