/* Translated to C by Bonnie Toy 5/88 - modified on 2/25/94 to fix a problem with daxpy for unequal increments or equal increments not equal to 1. Jack Dongarra - modified on 08/27/09 fix typo line 270, plus set 'ix' to 0 in the case incx is not 1 Julie Langou To compile single precision version for Sun-4: cc -DSP -O4 -fsingle -fsingle2 clinpack.c -lm To compile double precision version for Sun-4: cc -DDP -O4 clinpack.c -lm To obtain rolled source BLAS, add -DROLL to the command lines. To obtain unrolled source BLAS, add -DUNROLL to the command lines. You must specify one of -DSP or -DDP to compile correctly. You must specify one of -DROLL or -DUNROLL to compile correctly. */ #include #ifdef ARCH_RISCV_FPU_S #define SP #else /* * If the chip does not support floating-point, then this program is executed * with software double precision floating-point. */ #define DP #endif #define FABS(x) ((x > 0) ? (x) : (-x)) #define __NO_OS__ #define UNROLL #ifdef SP #define REAL float #define ZERO 0.0 #define ONE 1.0 #define PREC "Single " #define FLOOR_REAL floorf #endif #ifdef DP #define REAL double #define ZERO 0.0e0 #define ONE 1.0e0 #define PREC "Double " #define FLOOR_REAL floor #endif #define NTIMES 10 #ifdef ROLL #define ROLLING "Rolled " #endif #ifdef UNROLL #define ROLLING "Unrolled " #endif #include #include #include #include static REAL timer[9][9]; /*----------------------*/ int print_time (row) int row; { #ifndef AIC_PRINT_FLOAT_CUSTOM fprintf(stderr,"%11.2f%11.2f%11.2f%11.0f%11.2f%11.2f\n", (REAL)timer[0][row], (REAL)timer[1][row], (REAL)timer[2][row], (REAL)timer[3][row], (REAL)timer[4][row], (REAL)timer[5][row]); #else /* print float */ REAL p_f[6] = {0}; unsigned int p_i1[6] = {0}; unsigned int p_i2[6] = {0}; int i = 0; for (i=0; i<6; i++){ p_f[i] = (REAL)timer[i][row]; p_i1[i] = (unsigned int)p_f[i]; p_i2[i] = (unsigned int)((p_f[i]-p_i1[i])*100.0); } fprintf(stderr,"%11d.%-2d%11d.%-2d%11d.%-2d%11d.%-2d%11d.%-2d%11d.%-2d\n", p_i1[0], p_i2[0], p_i1[1], p_i2[1], p_i1[2], p_i2[2], p_i1[3], p_i2[3], p_i1[4], p_i2[4], p_i1[5], p_i2[5]); #endif return 0; } /*----------------------*/ int matgen(a,lda,n,b,norma) REAL a[],b[],*norma; int lda, n; /* We would like to declare a[][lda], but c does not allow it. In this function, references to a[i][j] are written a[lda*j+i]. */ { int init, i, j; init = 1325; *norma = 0.0; for (j = 0; j < n; j++) { for (i = 0; i < n; i++) { init = 3125*init % 65536; a[lda*j+i] = (init - 32768.0)/16384.0; *norma = (a[lda*j+i] > *norma) ? a[lda*j+i] : *norma; } } for (i = 0; i < n; i++) { b[i] = 0.0; } for (j = 0; j < n; j++) { for (i = 0; i < n; i++) { b[i] = b[i] + a[lda*j+i]; } } return 0; } /*----------------------*/ void dscal(n,da,dx,incx) /* scales a vector by a constant. jack dongarra, linpack, 3/11/78. */ REAL da,dx[]; int n, incx; { int i,m,nincx; if(n <= 0)return; if(incx != 1) { /* code for increment not equal to 1 */ nincx = n*incx; for (i = 0; i < nincx; i = i + incx) dx[i] = da*dx[i]; return; } /* code for increment equal to 1 */ #ifdef ROLL for (i = 0; i < n; i++) dx[i] = da*dx[i]; #endif #ifdef UNROLL m = n % 5; if (m != 0) { for (i = 0; i < m; i++) dx[i] = da*dx[i]; if (n < 5) return; } for (i = m; i < n; i = i + 5){ dx[i] = da*dx[i]; dx[i+1] = da*dx[i+1]; dx[i+2] = da*dx[i+2]; dx[i+3] = da*dx[i+3]; dx[i+4] = da*dx[i+4]; } #endif } /*----------------------*/ void daxpy(n,da,dx,incx,dy,incy) /* constant times a vector plus a vector. jack dongarra, linpack, 3/11/78. */ REAL dx[],dy[],da; int incx,incy,n; { int i,ix,iy,m; if(n <= 0) return; if (da == ZERO) return; if(incx != 1 || incy != 1) { /* code for unequal increments or equal increments not equal to 1 */ ix = 0; iy = 0; if(incx < 0) ix = (-n+1)*incx; if(incy < 0)iy = (-n+1)*incy; for (i = 0;i < n; i++) { dy[iy] = dy[iy] + da*dx[ix]; ix = ix + incx; iy = iy + incy; } return; } /* code for both increments equal to 1 */ #ifdef ROLL for (i = 0;i < n; i++) { dy[i] = dy[i] + da*dx[i]; } #endif #ifdef UNROLL m = n % 4; if ( m != 0) { for (i = 0; i < m; i++) dy[i] = dy[i] + da*dx[i]; if (n < 4) return; } for (i = m; i < n; i = i + 4) { dy[i] = dy[i] + da*dx[i]; dy[i+1] = dy[i+1] + da*dx[i+1]; dy[i+2] = dy[i+2] + da*dx[i+2]; dy[i+3] = dy[i+3] + da*dx[i+3]; } #endif } /*----------------------*/ void dgefa(a,lda,n,ipvt,info) REAL a[]; int lda,n,ipvt[],*info; /* We would like to declare a[][lda], but c does not allow it. In this function, references to a[i][j] are written a[lda*i+j]. */ /* dgefa factors a double precision matrix by gaussian elimination. dgefa is usually called by dgeco, but it can be called directly with a saving in time if rcond is not needed. (time for dgeco) = (1 + 9/n)*(time for dgefa) . on entry a REAL precision[n][lda] the matrix to be factored. lda integer the leading dimension of the array a . n integer the order of the matrix a . on return a an upper triangular matrix and the multipliers which were used to obtain it. the factorization can be written a = l*u where l is a product of permutation and unit lower triangular matrices and u is upper triangular. ipvt integer[n] an integer vector of pivot indices. info integer = 0 normal value. = k if u[k][k] .eq. 0.0 . this is not an error condition for this subroutine, but it does indicate that dgesl or dgedi will divide by zero if called. use rcond in dgeco for a reliable indication of singularity. linpack. this version dated 08/14/78 . cleve moler, university of new mexico, argonne national lab. functions blas daxpy,dscal,idamax */ { /* internal variables */ REAL t; int idamax(),j,k,kp1,l,nm1; /* gaussian elimination with partial pivoting */ *info = 0; nm1 = n - 1; if (nm1 >= 0) { for (k = 0; k < nm1; k++) { kp1 = k + 1; /* find l = pivot index */ l = idamax(n-k,&a[lda*k+k],1) + k; ipvt[k] = l; /* zero pivot implies this column already triangularized */ if (a[lda*k+l] != ZERO) { /* interchange if necessary */ if (l != k) { t = a[lda*k+l]; a[lda*k+l] = a[lda*k+k]; a[lda*k+k] = t; } /* compute multipliers */ t = -ONE/a[lda*k+k]; dscal(n-(k+1),t,&a[lda*k+k+1],1); /* row elimination with column indexing */ for (j = kp1; j < n; j++) { t = a[lda*j+l]; if (l != k) { a[lda*j+l] = a[lda*j+k]; a[lda*j+k] = t; } daxpy(n-(k+1),t,&a[lda*k+k+1],1, &a[lda*j+k+1],1); } } else { *info = k; } } } ipvt[n-1] = n-1; if (a[lda*(n-1)+(n-1)] == ZERO) *info = n-1; } /*----------------------*/ void dgesl(a,lda,n,ipvt,b,job) int lda,n,ipvt[],job; REAL a[],b[]; /* We would like to declare a[][lda], but c does not allow it. In this function, references to a[i][j] are written a[lda*i+j]. */ /* dgesl solves the double precision system a * x = b or trans(a) * x = b using the factors computed by dgeco or dgefa. on entry a double precision[n][lda] the output from dgeco or dgefa. lda integer the leading dimension of the array a . n integer the order of the matrix a . ipvt integer[n] the pivot vector from dgeco or dgefa. b double precision[n] the right hand side vector. job integer = 0 to solve a*x = b , = nonzero to solve trans(a)*x = b where trans(a) is the transpose. on return b the solution vector x . error condition a division by zero will occur if the input factor contains a zero on the diagonal. technically this indicates singularity but it is often caused by improper arguments or improper setting of lda . it will not occur if the subroutines are called correctly and if dgeco has set rcond .gt. 0.0 or dgefa has set info .eq. 0 . to compute inverse(a) * c where c is a matrix with p columns dgeco(a,lda,n,ipvt,rcond,z) if (!rcond is too small){ for (j=0,j= 1) { for (k = 0; k < nm1; k++) { l = ipvt[k]; t = b[l]; if (l != k){ b[l] = b[k]; b[k] = t; } daxpy(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1); } } /* now solve u*x = y */ for (kb = 0; kb < n; kb++) { k = n - (kb + 1); b[k] = b[k]/a[lda*k+k]; t = -b[k]; daxpy(k,t,&a[lda*k+0],1,&b[0],1); } } else { /* job = nonzero, solve trans(a) * x = b first solve trans(u)*y = b */ for (k = 0; k < n; k++) { t = ddot(k,&a[lda*k+0],1,&b[0],1); b[k] = (b[k] - t)/a[lda*k+k]; } /* now solve trans(l)*x = y */ if (nm1 >= 1) { for (kb = 1; kb < nm1; kb++) { k = n - (kb+1); b[k] = b[k] + ddot(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1); l = ipvt[k]; if (l != k) { t = b[l]; b[l] = b[k]; b[k] = t; } } } } } /*----------------------*/ REAL ddot(n,dx,incx,dy,incy) /* forms the dot product of two vectors. jack dongarra, linpack, 3/11/78. */ REAL dx[],dy[]; int incx,incy,n; { REAL dtemp; int i,ix,iy,m; dtemp = ZERO; if(n <= 0) return(ZERO); if(incx != 1 || incy != 1) { /* code for unequal increments or equal increments not equal to 1 */ ix = 0; iy = 0; if (incx < 0) ix = (-n+1)*incx; if (incy < 0) iy = (-n+1)*incy; for (i = 0;i < n; i++) { dtemp = dtemp + dx[ix]*dy[iy]; ix = ix + incx; iy = iy + incy; } return(dtemp); } /* code for both increments equal to 1 */ #ifdef ROLL for (i=0;i < n; i++) dtemp = dtemp + dx[i]*dy[i]; return(dtemp); #endif #ifdef UNROLL m = n % 5; if (m != 0) { for (i = 0; i < m; i++) dtemp = dtemp + dx[i]*dy[i]; if (n < 5) return(dtemp); } for (i = m; i < n; i = i + 5) { dtemp = dtemp + dx[i]*dy[i] + dx[i+1]*dy[i+1] + dx[i+2]*dy[i+2] + dx[i+3]*dy[i+3] + dx[i+4]*dy[i+4]; } return(dtemp); #endif } /*----------------------*/ int idamax(n,dx,incx) /* finds the index of element having max. absolute value. jack dongarra, linpack, 3/11/78. */ REAL dx[]; int incx,n; { REAL dmax; int i, ix, itemp=0; if( n < 1 ) return(-1); if(n ==1 ) return(0); if(incx != 1) { /* code for increment not equal to 1 */ ix = 0; dmax = FABS(dx[0]); ix = ix + incx; for (i = 1; i < n; i++) { if(FABS(dx[ix]) > dmax) { itemp = i; dmax = FABS(dx[ix]); } ix = ix + incx; } } else { /* code for increment equal to 1 */ itemp = 0; dmax = FABS(dx[0]); for (i = 1; i < n; i++) { if(FABS(dx[i]) > dmax) { itemp = i; dmax = FABS(dx[i]); } } } return (itemp); } /*----------------------*/ REAL epslon (x) REAL x; /* estimate unit roundoff in quantities of size x. */ { REAL a,b,c,eps; /* this program should function properly on all systems satisfying the following two assumptions, 1. the base used in representing dfloating point numbers is not a power of three. 2. the quantity a in statement 10 is represented to the accuracy used in dfloating point variables that are stored in memory. the statement number 10 and the go to 10 are intended to force optimizing compilers to generate code satisfying assumption 2. under these assumptions, it should be true that, a is not exactly equal to four-thirds, b has a zero for its last bit or digit, c is not exactly equal to one, eps measures the separation of 1.0 from the next larger dfloating point number. the developers of eispack would appreciate being informed about any systems where these assumptions do not hold. ***************************************************************** this routine is one of the auxiliary routines used by eispack iii to avoid machine dependencies. ***************************************************************** this version dated 4/6/83. */ a = 4.0e0/3.0e0; eps = ZERO; while (eps == ZERO) { b = a - ONE; c = b + b + b; eps = FABS((c-ONE)); } return(eps*FABS(x)); } /*----------------------*/ void dmxpy (n1, y, n2, ldm, x, m) REAL y[], x[], m[]; int n1, n2, ldm; /* We would like to declare m[][ldm], but c does not allow it. In this function, references to m[i][j] are written m[ldm*i+j]. */ /* purpose: multiply matrix m times vector x and add the result to vector y. parameters: n1 integer, number of elements in vector y, and number of rows in matrix m y double [n1], vector of length n1 to which is added the product m*x n2 integer, number of elements in vector x, and number of columns in matrix m ldm integer, leading dimension of array m x double [n2], vector of length n2 m double [ldm][n2], matrix of n1 rows and n2 columns ---------------------------------------------------------------------- */ { int j,i,jmin; /* cleanup odd vector */ j = n2 % 2; if (j >= 1) { j = j - 1; for (i = 0; i < n1; i++) y[i] = (y[i]) + x[j]*m[ldm*j+i]; } /* cleanup odd group of two vectors */ j = n2 % 4; if (j >= 2) { j = j - 1; for (i = 0; i < n1; i++) y[i] = ( (y[i]) + x[j-1]*m[ldm*(j-1)+i]) + x[j]*m[ldm*j+i]; } /* cleanup odd group of four vectors */ j = n2 % 8; if (j >= 4) { j = j - 1; for (i = 0; i < n1; i++) y[i] = ((( (y[i]) + x[j-3]*m[ldm*(j-3)+i]) + x[j-2]*m[ldm*(j-2)+i]) + x[j-1]*m[ldm*(j-1)+i]) + x[j]*m[ldm*j+i]; } /* cleanup odd group of eight vectors */ j = n2 % 16; if (j >= 8) { j = j - 1; for (i = 0; i < n1; i++) y[i] = ((((((( (y[i]) + x[j-7]*m[ldm*(j-7)+i]) + x[j-6]*m[ldm*(j-6)+i]) + x[j-5]*m[ldm*(j-5)+i]) + x[j-4]*m[ldm*(j-4)+i]) + x[j-3]*m[ldm*(j-3)+i]) + x[j-2]*m[ldm*(j-2)+i]) + x[j-1]*m[ldm*(j-1)+i]) + x[j] *m[ldm*j+i]; } /* main loop - groups of sixteen vectors */ jmin = (n2%16)+16; for (j = jmin-1; j < n2; j = j + 16) { for (i = 0; i < n1; i++) y[i] = ((((((((((((((( (y[i]) + x[j-15]*m[ldm*(j-15)+i]) + x[j-14]*m[ldm*(j-14)+i]) + x[j-13]*m[ldm*(j-13)+i]) + x[j-12]*m[ldm*(j-12)+i]) + x[j-11]*m[ldm*(j-11)+i]) + x[j-10]*m[ldm*(j-10)+i]) + x[j- 9]*m[ldm*(j- 9)+i]) + x[j- 8]*m[ldm*(j- 8)+i]) + x[j- 7]*m[ldm*(j- 7)+i]) + x[j- 6]*m[ldm*(j- 6)+i]) + x[j- 5]*m[ldm*(j- 5)+i]) + x[j- 4]*m[ldm*(j- 4)+i]) + x[j- 3]*m[ldm*(j- 3)+i]) + x[j- 2]*m[ldm*(j- 2)+i]) + x[j- 1]*m[ldm*(j- 1)+i]) + x[j] *m[ldm*j+i]; } } /*----------------------*/ #ifndef __NO_OS__ REAL second() { #include #include struct rusage ru; REAL t ; getrusage(RUSAGE_SELF,&ru) ; t = (REAL) (ru.ru_utime.tv_sec+ru.ru_stime.tv_sec) + ((REAL) (ru.ru_utime.tv_usec+ru.ru_stime.tv_usec))/1.0e6 ; return t ; } #else #if 0 REAL second() { unsigned long long clock(); return clock()/1.0e6; } #endif #include #include #include REAL second() { #if 0 struct timeval tp; struct timezone tzp; gettimeofday(&tp,&tzp); return ( (REAL) tp.tv_sec + (REAL) tp.tv_usec * 1.e-6 ); #else return ((REAL)aic_get_time_us() * 1.e-6); #endif } #endif //typedef unsigned int u_int32_t; typedef union { double value; struct { u_int32_t msw; u_int32_t lsw; } parts; uint64_t word; } ieee_double_shape_type_e; /* Get all in one, efficient on 64-bit machines. */ #ifndef EXTRACT_WORDS64 # define EXTRACT_WORDS64(i,d) \ do { \ ieee_double_shape_type_e gh_u; \ gh_u.value = (d); \ (i) = gh_u.word; \ } while (0) #endif /* Get all in one, efficient on 64-bit machines. */ #ifndef INSERT_WORDS64 # define INSERT_WORDS64(d,i) \ do { \ ieee_double_shape_type_e iw_u; \ iw_u.word = (i); \ (d) = iw_u.value; \ } while (0) #endif double floor (double x) { int64_t i0; EXTRACT_WORDS64(i0,x); int32_t j0 = ((i0>>52)&0x7ff)-0x3ff; if(__builtin_expect(j0<52, 1)) { if(j0<0) { /* return 0*sign(x) if |x|<1 */ if(i0>=0) {i0=0;} else if((i0&0x7fffffffffffffffl)!=0) { i0=0xbff0000000000000l;} } else { uint64_t i = (0x000fffffffffffffl)>>j0; if((i0&i)==0) return x; /* x is integral */ if(i0<0) i0 += (0x0010000000000000l)>>j0; i0 &= (~i); } INSERT_WORDS64(x,i0); } else if (j0==0x400) return x+x; /* inf or NaN */ return x; } void test_linpack() { static REAL aa[200][200],a[200][201],b[200],x[200]; REAL cray,ops,total,norma,normx; REAL resid,residn,eps,t1,tm,tm2; REAL epslon(),second(),kf; static int ipvt[200],n,i,ntimes,info,lda,ldaa,kflops; lda = 201; ldaa = 200; cray = .056; n = 200; fprintf(stdout,ROLLING);fprintf(stdout,PREC);fprintf(stdout,"Precision Linpack\n\n"); fprintf(stderr,ROLLING);fprintf(stderr,PREC);fprintf(stderr,"Precision Linpack\n\n"); ops = (2.0e0*(n*n*n))/3.0 + 2.0*(n*n); matgen(a,lda,n,b,&norma); t1 = second(); dgefa(a,lda,n,ipvt,&info); timer[0][0] = second() - t1; t1 = second(); dgesl(a,lda,n,ipvt,b,0); timer[1][0] = second() - t1; total = timer[0][0] + timer[1][0]; /* compute a residual to verify results. */ for (i = 0; i < n; i++) { x[i] = b[i]; } matgen(a,lda,n,b,&norma); for (i = 0; i < n; i++) { b[i] = -b[i]; } dmxpy(n,b,n,lda,x,a); resid = 0.0; normx = 0.0; for (i = 0; i < n; i++) { resid = (resid > FABS(b[i])) ? resid : FABS(b[i]); normx = (normx > FABS(x[i])) ? normx : FABS(x[i]); } eps = epslon((REAL)ONE); residn = resid/( n*norma*normx*eps ); printf(" norm. resid resid machep"); printf(" x[0]-1 x[n-1]-1\n"); printf(" %8.1f %16.8e%16.8e%16.8e%16.8e\n", (REAL)residn, (REAL)resid, (REAL)eps, (REAL)x[0]-1, (REAL)x[n-1]-1); fprintf(stderr," times are reported for matrices of order %5d\n",n); fprintf(stderr," dgefa dgesl total kflops unit"); fprintf(stderr," ratio\n"); timer[2][0] = total; timer[3][0] = ops/(1.0e3*total); timer[4][0] = 2.0e3/timer[3][0]; timer[5][0] = total/cray; fprintf(stderr," times for array with leading dimension of%5d\n",lda); print_time(0); matgen(a,lda,n,b,&norma); t1 = second(); dgefa(a,lda,n,ipvt,&info); timer[0][1] = second() - t1; t1 = second(); dgesl(a,lda,n,ipvt,b,0); timer[1][1] = second() - t1; total = timer[0][1] + timer[1][1]; timer[2][1] = total; timer[3][1] = ops/(1.0e3*total); timer[4][1] = 2.0e3/timer[3][1]; timer[5][1] = total/cray; matgen(a,lda,n,b,&norma); t1 = second(); dgefa(a,lda,n,ipvt,&info); timer[0][2] = second() - t1; t1 = second(); dgesl(a,lda,n,ipvt,b,0); timer[1][2] = second() - t1; total = timer[0][2] + timer[1][2]; timer[2][2] = total; timer[3][2] = ops/(1.0e3*total); timer[4][2] = 2.0e3/timer[3][2]; timer[5][2] = total/cray; ntimes = NTIMES; tm2 = 0.0; t1 = second(); for (i = 0; i < ntimes; i++) { tm = second(); matgen(a,lda,n,b,&norma); tm2 = tm2 + second() - tm; dgefa(a,lda,n,ipvt,&info); } timer[0][3] = (second() - t1 - tm2)/ntimes; t1 = second(); for (i = 0; i < ntimes; i++) { dgesl(a,lda,n,ipvt,b,0); } timer[1][3] = (second() - t1)/ntimes; total = timer[0][3] + timer[1][3]; timer[2][3] = total; timer[3][3] = ops/(1.0e3*total); timer[4][3] = 2.0e3/timer[3][3]; timer[5][3] = total/cray; print_time(1); print_time(2); print_time(3); matgen(aa,ldaa,n,b,&norma); t1 = second(); dgefa(aa,ldaa,n,ipvt,&info); timer[0][4] = second() - t1; t1 = second(); dgesl(aa,ldaa,n,ipvt,b,0); timer[1][4] = second() - t1; total = timer[0][4] + timer[1][4]; timer[2][4] = total; timer[3][4] = ops/(1.0e3*total); timer[4][4] = 2.0e3/timer[3][4]; timer[5][4] = total/cray; matgen(aa,ldaa,n,b,&norma); t1 = second(); dgefa(aa,ldaa,n,ipvt,&info); timer[0][5] = second() - t1; t1 = second(); dgesl(aa,ldaa,n,ipvt,b,0); timer[1][5] = second() - t1; total = timer[0][5] + timer[1][5]; timer[2][5] = total; timer[3][5] = ops/(1.0e3*total); timer[4][5] = 2.0e3/timer[3][5]; timer[5][5] = total/cray; matgen(aa,ldaa,n,b,&norma); t1 = second(); dgefa(aa,ldaa,n,ipvt,&info); timer[0][6] = second() - t1; t1 = second(); dgesl(aa,ldaa,n,ipvt,b,0); timer[1][6] = second() - t1; total = timer[0][6] + timer[1][6]; timer[2][6] = total; timer[3][6] = ops/(1.0e3*total); timer[4][6] = 2.0e3/timer[3][6]; timer[5][6] = total/cray; ntimes = NTIMES; tm2 = 0; t1 = second(); for (i = 0; i < ntimes; i++) { tm = second(); matgen(aa,ldaa,n,b,&norma); tm2 = tm2 + second() - tm; dgefa(aa,ldaa,n,ipvt,&info); } timer[0][7] = (second() - t1 - tm2)/ntimes; t1 = second(); for (i = 0; i < ntimes; i++) { dgesl(aa,ldaa,n,ipvt,b,0); } timer[1][7] = (second() - t1)/ntimes; total = timer[0][7] + timer[1][7]; timer[2][7] = total; timer[3][7] = ops/(1.0e3*total); timer[4][7] = 2.0e3/timer[3][7]; timer[5][7] = total/cray; /* the following code sequence implements the semantics of the Fortran intrinsics "nint(min(timer[3][3],timer[3][7]))" */ kf = (timer[3][3] < timer[3][7]) ? timer[3][3] : timer[3][7]; kf = (kf > ZERO) ? (kf + .5) : (kf - .5); if (FABS(kf) < ONE) kflops = 0; else { kflops = FLOOR_REAL(FABS(kf)); if (kf < ZERO) kflops = -kflops; } fprintf(stderr," times for array with leading dimension of%4d\n",ldaa); print_time(4); print_time(5); print_time(6); print_time(7); fprintf(stderr,ROLLING);fprintf(stderr,PREC); fprintf(stderr," Precision %5d Kflops ; %d Reps \n",kflops,NTIMES); #ifdef DP printf("Linpack_dp runs successfully!\n"); #else printf("Linpack_sp runs successfully!\n"); #endif } MSH_CMD_EXPORT(test_linpack, "Linpack benchmark")