Files
luban-lite-t3e-pro/bsp/artinchip/drv_bare/sdmc/mmc.c
刘可亮 aaa66c7b20 V1.0.1
2023-11-09 20:19:51 +08:00

1101 lines
26 KiB
C

/*
* Copyright (c) 2023, Artinchip Technology Co., Ltd
*
* SPDX-License-Identifier: Apache-2.0
*
* Xiong Hao <hao.xiong@artinchip.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <aic_common.h>
#include <aic_core.h>
#include <aic_soc.h>
#include <aic_hal.h>
#include <mmc.h>
#include "sdmc.h"
#define MAX_MMC_DEV_NUM 3
#define CONFIG_SYS_MMC_MAX_BLK_COUNT 300
#define be32_to_cpu(x) \
((0x000000ff & ((x) >> 24)) | (0x0000ff00 & ((x) >> 8)) | \
(0x00ff0000 & ((x) << 8)) | (0xff000000 & ((x) << 24)))
static void *mmc_dev[MAX_MMC_DEV_NUM];
static struct aic_sdmc_pdata sdmc_pdata[] = {
#if defined(AIC_USING_SDMC0)
{
.id = 0,
.base = SDMC0_BASE,
.irq = SDMC0_IRQn,
.clk = CLK_SDMC0,
#if defined(AIC_SDMC0_BUSWIDTH8)
.buswidth8 = 1,
#endif
.drv_phase = AIC_SDMC0_DRV_PHASE,
.smp_phase = AIC_SDMC0_SMP_PHASE,
},
#endif
#if defined(AIC_USING_SDMC1)
{
.id = 1,
.base = SDMC1_BASE,
.irq = SDMC1_IRQn,
.clk = CLK_SDMC1,
#if defined(AIC_SDMC1_IS_SDIO)
.is_sdio = 1,
#endif
.drv_phase = AIC_SDMC1_DRV_PHASE,
.smp_phase = AIC_SDMC1_SMP_PHASE,
},
#endif
#if defined(AIC_USING_SDMC2)
{
.id = 2,
.base = SDMC2_BASE,
.irq = SDMC2_IRQn,
.clk = CLK_SDMC2,
#if defined(AIC_SDMC2_IS_SDIO)
.is_sdio = 1,
#endif
.drv_phase = AIC_SDMC2_DRV_PHASE,
.smp_phase = AIC_SDMC2_SMP_PHASE,
},
#endif
};
static inline u32 GET_BITS(u32 *resp, u32 start, u32 size)
{
const s32 __size = size;
const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;
const s32 __off = 3 - ((start) / 32);
const s32 __shft = (start) & 31;
u32 __res;
__res = resp[__off] >> __shft;
if (__size + __shft > 32)
__res |= resp[__off-1] << ((32 - __shft) % 32);
return __res & __mask;
}
static void mmc_trace_before_send(struct aic_sdmc_cmd *cmd)
{
#ifdef SDMC_DUMP_CMD
printf("CMD_SEND: %d\n", cmd->cmd_code);
printf("\t\tARG\t\t\t 0x%08x\n", cmd->arg);
#endif
}
static void mmc_trace_after_send(struct aic_sdmc_cmd *cmd)
{
#ifdef SDMC_DUMP_CMD
int i;
u8 *ptr;
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tRSP_NONE\n\n");
break;
case MMC_RSP_R1:
printf("\t\tRSP_R1,5,6,7 \t\t 0x%08x \n",
cmd->resp[0]);
break;
case MMC_RSP_R1b:
printf("\t\tRSP_R1B\t\t 0x%08x \n",
cmd->resp[0]);
break;
case MMC_RSP_R2:
printf("\t\tRSP_R2\t\t\t 0x%08x \n", cmd->resp[0]);
printf("\t\t \t\t 0x%08x \n", cmd->resp[1]);
printf("\t\t \t\t 0x%08x \n", cmd->resp[2]);
printf("\t\t \t\t 0x%08x \n", cmd->resp[3]);
printf("\n");
printf("\t\t\t\t\tDUMPING DATA\n\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->resp[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02x ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tRSP_R3,4\t\t 0x%08x \n",
cmd->resp[0]);
break;
default:
printf("\t\tERROR MMCSD rsp not supported 0x%x\n", cmd->resp_type);
break;
}
#endif
}
int mmc_send_cmd(struct aic_sdmc *host, struct aic_sdmc_cmd *cmd,
struct aic_sdmc_data *data)
{
memset(cmd->resp, 0, sizeof(cmd->resp));
mmc_trace_before_send(cmd);
aic_sdmc_request(host, cmd, data);
mmc_trace_after_send(cmd);
return cmd->err;
}
static int mmc_go_idle(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
int err;
memset(&cmd, 0, sizeof(struct aic_sdmc_cmd));
cmd.cmd_code = MMC_CMD_GO_IDLE_STATE;
cmd.resp_type = MMC_RSP_NONE;
cmd.arg = 0;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
aicos_mdelay(1);
return 0;
}
static int sd_send_op_cond(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
int err, timeout = 1000;
do {
cmd.cmd_code = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.arg = 0;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
cmd.cmd_code = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.arg = (host->dev->voltages & 0xff8000);
if (host->dev->version == SD_VERSION_2)
cmd.arg |= OCR_HCS;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
aicos_mdelay(1);
} while ((!(cmd.resp[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return -1;
if (host->dev->version != SD_VERSION_2)
host->dev->version = SD_VERSION_1_0;
host->dev->valid_ocr = cmd.resp[0];
host->dev->high_capacity = ((host->dev->valid_ocr & OCR_HCS) == OCR_HCS);
host->dev->rca = 0;
return 0;
}
static int mmc_send_op_cond(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
int err, timeout = 1000;
/* Some cards seem to need this */
mmc_go_idle(host);
/* CMD1: Asking to the card its capabilities */
cmd.cmd_code = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.arg = 0;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
aicos_mdelay(1);
do {
cmd.cmd_code = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.arg = ((host->dev->voltages & (cmd.resp[0] & OCR_VOLTAGE_MASK)) |
(cmd.resp[0] & OCR_ACCESS_MODE));
if (host->dev->host_caps & MMC_MODE_HC)
cmd.arg |= OCR_HCS;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
aicos_mdelay(1);
} while ((!(cmd.resp[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return -1;
host->dev->version = MMC_VERSION_UNKNOWN;
host->dev->valid_ocr = cmd.resp[0];
host->dev->high_capacity = ((host->dev->valid_ocr & OCR_HCS) == OCR_HCS);
host->dev->rca = 1;
return 0;
}
static int mmc_send_ext_csd(struct aic_sdmc *host, u8 *ext_csd)
{
struct aic_sdmc_cmd cmd = {0};
struct aic_sdmc_data data = {0};
int err;
cmd.cmd_code = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.arg = 0;
cmd.flags = 0;
data.buf = ext_csd;
data.blks = 1;
data.blksize = 512;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(host, &cmd, &data);
return err;
}
static int mmc_get_capabilities(struct aic_sdmc *host, u8 *ext_csd)
{
host->dev->card_caps = 0;
/* Only version 4 supports high-speed */
if (host->dev->version < MMC_VERSION_4)
return 0;
/* Default is 4-line mode */
host->dev->card_caps |= MMC_MODE_4BIT;
host->dev->card_caps |= MMC_MODE_HS;
return 0;
}
static int sd_switch(struct aic_sdmc *host, int mode, int group, u8 value, u8 *resp)
{
struct aic_sdmc_cmd cmd = {0};
struct aic_sdmc_data data = {0};
/* Switch the frequency */
cmd.cmd_code = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.arg = (mode << 31) | 0xffffff;
cmd.arg &= ~(0xf << (group * 4));
cmd.arg |= value << (group * 4);
data.buf = resp;
data.blksize = 64;
data.blks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(host, &cmd, &data);
}
static int sd_get_capabilities(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
struct aic_sdmc_data data = {0};
ALLOC_CACHE_ALIGN_BUFFER(u32, scr, 16);
ALLOC_CACHE_ALIGN_BUFFER(u32, switch_status, 16);
int err, timeout;
host->dev->card_caps = 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmd_code = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.arg = host->dev->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
cmd.cmd_code = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.arg = 0;
cmd.flags = 0;
timeout = 3;
retry_scr:
data.buf = (u8 *)scr;
data.blksize = 8;
data.blks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(host, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
host->dev->scr[0] = be32_to_cpu(scr[0]);
host->dev->scr[1] = be32_to_cpu(scr[1]);
switch ((host->dev->scr[0] >> 24) & 0xf) {
case 0:
host->dev->version = SD_VERSION_1_0;
pr_debug("SD Ver 1.0\n");
break;
case 1:
host->dev->version = SD_VERSION_1_10;
pr_debug("SD Ver 1.1\n");
break;
case 2:
host->dev->version = SD_VERSION_2;
pr_debug("SD Ver 2.0\n");
break;
default:
host->dev->version = SD_VERSION_1_0;
pr_debug("SD Ver 1.0\n");
break;
}
if (host->dev->version < MMC_VERSION_4)
return 0;
/* Default is 4-line mode */
if (host->dev->scr[0] & SD_DATA_4BIT) {
host->dev->card_caps |= MMC_MODE_4BIT;
pr_debug("Card caps 4 bit\n");
}
/* Version 1.0 doesn't support switching */
if (host->dev->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(host, SD_SWITCH_CHECK, 0, 1, (u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)
host->dev->card_caps |= MMC_MODE_HS;
return 0;
}
static int sd_set_card_speed(struct aic_sdmc *host, u32 hs)
{
int err;
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
/* SD version 1.00 and 1.01 does not support CMD 6 */
if (host->dev->version == SD_VERSION_1_0)
return 0;
err = sd_switch(host, SD_SWITCH_SWITCH, 0, hs, (u8 *)switch_status);
if (err)
return err;
if (((be32_to_cpu(switch_status[4]) >> 24) & 0xF) != hs)
return -1;
return 0;
}
static int sd_select_bus_width(struct aic_sdmc *host, int w)
{
int err;
struct aic_sdmc_cmd cmd = {0};
if ((w != 4) && (w != 1))
return -EINVAL;
cmd.cmd_code = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.arg = host->dev->rca << 16;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
cmd.cmd_code = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
if (w == 4)
cmd.arg = 2;
else if (w == 1)
cmd.arg = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
return 0;
}
static void mmc_update_version(struct aic_sdmc *host, int version)
{
switch (version) {
case 0:
host->dev->version = MMC_VERSION_1_2;
break;
case 1:
host->dev->version = MMC_VERSION_1_4;
break;
case 2:
host->dev->version = MMC_VERSION_2_2;
break;
case 3:
host->dev->version = MMC_VERSION_3;
break;
case 4:
host->dev->version = MMC_VERSION_4;
break;
default:
host->dev->version = MMC_VERSION_1_2;
break;
}
}
static int mmc_get_csd(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
int err = 0;
u32 csd_ver = 0;
/* CMD9 - Get the Card-Specific Data */
cmd.cmd_code = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.arg = host->dev->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (err)
return err;
if (host->dev->version == MMC_VERSION_UNKNOWN)
mmc_update_version(host, (cmd.resp[0] >> 26) & 0xf);
host->dev->read_bl_len = 512;
if (host->index) {
csd_ver = GET_BITS(cmd.resp, 126, 2);
switch (csd_ver) {
case 0:
host->dev->card_capacity = (GET_BITS(cmd.resp, 62, 12) + 1) << (GET_BITS(cmd.resp, 47, 3) + 2);
host->dev->card_capacity *= GET_BITS(cmd.resp, 80, 4);
host->dev->card_capacity >>= 10; /* unit:KB */
break;
case 1:
host->dev->card_capacity = (GET_BITS(cmd.resp, 48, 22) + 1) * 512; /* unit:KB */
break;
default:
pr_err("unrecognised CSD structure version %d!", csd_ver);
break;
}
printf("SD card capacity %d KB.\n", host->dev->card_capacity);
}
return 0;
}
static int mmc_go_transfer_mode(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
int err = 0;
/* CMD7 - Select the card, and put it into Transfer Mode */
cmd.cmd_code = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1b;
cmd.arg = host->dev->rca << 16;
err = mmc_send_cmd(host, &cmd, NULL);
return err;
}
static int sd_startup(struct aic_sdmc *host)
{
s32 err;
err = sd_get_capabilities(host);
if (err != 0)
return err;
if (host->dev->card_caps & MMC_MODE_4BIT) {
host->dev->bus_width = 4;
sd_select_bus_width(host, 4);
aic_sdmc_set_cfg(host);
}
if (host->dev->card_caps & MMC_MODE_HS) {
sd_set_card_speed(host, 1);
host->dev->clock = 50000000;
} else {
sd_set_card_speed(host, 0);
host->dev->clock = 25000000;
}
aic_sdmc_set_cfg(host);
return 0;
}
static int emmc_startup(struct aic_sdmc *host)
{
s32 err;
u8 ext_csd[512] = {0};
if (host->dev->version >= MMC_VERSION_4) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(host, ext_csd);
/* update mmcdev version */
switch (ext_csd[192]) {
case 0:
host->dev->version = MMC_VERSION_4;
break;
case 1:
host->dev->version = MMC_VERSION_4_1;
break;
case 2:
host->dev->version = MMC_VERSION_4_2;
break;
case 3:
host->dev->version = MMC_VERSION_4_3;
break;
case 5:
host->dev->version = MMC_VERSION_4_41;
break;
case 6:
host->dev->version = MMC_VERSION_4_5;
break;
case 7:
host->dev->version = MMC_VERSION_5_0;
break;
case 8:
host->dev->version = MMC_VERSION_5_1;
break;
}
/* Check Read only ext_csd[160] whether support partition. */
if (ext_csd[160] & PART_SUPPORT)
host->dev->part_config = ext_csd[179];
}
err = mmc_get_capabilities(host, ext_csd);
if (err != 0)
return err;
/* Restrict card's capabilities by what the host can do */
host->dev->card_caps &= host->dev->host_caps;
if (host->dev->card_caps & MMC_MODE_4BIT) {
/* Set the card to use 4 bit*/
host->dev->bus_width = 4;
aic_sdmc_set_cfg(host);
} else if (host->dev->card_caps & MMC_MODE_8BIT) {
/* Set the card to use 8 bit*/
host->dev->bus_width = 8;
aic_sdmc_set_cfg(host);
}
if (host->dev->card_caps & MMC_MODE_HS) {
if (host->dev->card_caps & MMC_MODE_HS_52MHz)
host->dev->clock = 52000000;
else
host->dev->clock = 26000000;
} else {
/* MMC Legacy */
host->dev->clock = 25000000;
}
aic_sdmc_set_cfg(host);
return 0;
}
static int mmc_go_identify_mode(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
int err = 0;
/* CMD2 - Put the Card in Identify Mode */
cmd.cmd_code = MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.arg = 0;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
return err;
}
static s32 mmc_relative_addr(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
int err = 0;
/*
* CMD3 - For MMC cards, set the Relative Address.
* For SD cards, get the Relative Address.
* This also puts the cards into Standby State
*/
cmd.cmd_code = SD_CMD_SEND_RELATIVE_ADDR; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R6;
cmd.arg = host->dev->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (IS_SD(host))
host->dev->rca = (cmd.resp[0] >> 16) & 0xffff;
return err;
}
static int mmc_startup(struct aic_sdmc *host)
{
int err = 0;
/* Get Card-Specific-Data and update parameters */
err = mmc_get_csd(host);
if (err)
return err;
err = mmc_go_transfer_mode(host);
if (err)
return err;
host->dev->part_config = MMCPART_NOAVAILABLE;
host->dev->boot_bus_cond = MMCPART_NOAVAILABLE;
if (IS_SD(host))
err = sd_startup(host);
else
err = emmc_startup(host);
if (err)
return err;
return 0;
}
static int mmc_send_if_cond(struct aic_sdmc *host)
{
struct aic_sdmc_cmd cmd = {0};
int err;
cmd.cmd_code = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.arg = ((host->dev->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
cmd.flags = 0;
err = mmc_send_cmd(host, &cmd, NULL);
if (err) {
pr_err("snd cmd failed.\n");
return err;
}
/*
* 0xaa is 8bit "check pattern", if the card is SD v2.0 or later, it will
* echo the check pattern value.
*/
if ((cmd.resp[0] & 0xff) != 0xaa) {
pr_err("resp failed(%d).\n", cmd.resp[0]);
return -1;
}
host->dev->version = SD_VERSION_2;
return 0;
}
u32 mmc_read_blocks(struct aic_sdmc *host, void *dst, u32 start, u32 blkcnt)
{
struct aic_sdmc_cmd cmd = {0};
struct aic_sdmc_data data = {0};
int err;
memset(&cmd, 0, sizeof(struct aic_sdmc_cmd));
memset(&data, 0, sizeof(struct aic_sdmc_data));
/* Change for send stop cmd manually */
if (blkcnt > 1) {
cmd.cmd_code = MMC_CMD_READ_MULTIPLE_BLOCK;
cmd.auto_stop_flag = 0;
} else {
cmd.cmd_code = MMC_CMD_READ_SINGLE_BLOCK;
cmd.auto_stop_flag = 0;
}
if (host->dev->high_capacity)
cmd.arg = start;
else
cmd.arg = start * host->dev->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.buf = dst;
data.blks = blkcnt;
data.blksize = host->dev->read_bl_len;
data.flags = MMC_DATA_READ;
/*
* Change for send stop cmd manually conditions
* Cmd 18 should be couple used with cmd 12
* 1.Response error(CRC error;timeout);
* 2.Data timeout;
* 3.Data error;
* 4.Transfer complete normally
*/
err = mmc_send_cmd(host, &cmd, &data);
if (err) {
pr_err("Send cmd %d error = %d\n", cmd.cmd_code, err);
return 0;
}
if ((cmd.cmd_code == MMC_CMD_READ_MULTIPLE_BLOCK) &&
!(cmd.auto_stop_flag)) {
cmd.cmd_code = MMC_CMD_STOP_TRANSMISSION;
cmd.resp_type = MMC_RSP_R1b;
cmd.arg = 0;
cmd.flags = 0;
if (mmc_send_cmd(host, &cmd, NULL)) {
pr_err("Failed to stop multi-block read. err -%d\n", cmd.err);
return 0;
}
}
if (cmd.err || data.err) {
printf("read blocks failed, %d, %d, 0x%08x, 0x%08x\n", cmd.err,
data.err, data.flags, data.blksize);
return 0;
}
return blkcnt;
}
u32 mmc_bread(void *priv, u32 start, u32 blkcnt, u8 *dst)
{
struct aic_sdmc *host = (struct aic_sdmc *)priv;
u32 cur, blk_todo = blkcnt;
if (blkcnt == 0)
return 0;
do {
if (blk_todo > host->dev->blk_max)
cur = host->dev->blk_max;
else
cur = blk_todo;
if (mmc_read_blocks(host, dst, start, cur) != cur)
return 0;
blk_todo -= cur;
start += cur;
dst += cur * host->dev->read_bl_len;
} while (blk_todo > 0);
return blkcnt;
}
u32 mmc_write_blocks(struct aic_sdmc *host, const u8 *src, u32 start, u32 blkcnt)
{
struct aic_sdmc_cmd cmd = {0};
struct aic_sdmc_data data = {0};
if (blkcnt > 1)
cmd.cmd_code = MMC_CMD_WRITE_MULTIPLE_BLOCK;
else
cmd.cmd_code = MMC_CMD_WRITE_SINGLE_BLOCK;
if (host->dev->high_capacity)
cmd.arg = start;
else
cmd.arg = start * host->dev->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.buf = (u8 *)src;
data.blks = blkcnt;
data.blksize = host->dev->read_bl_len;
data.flags = MMC_DATA_WRITE;
if (mmc_send_cmd(host, &cmd, &data)) {
pr_err("write blocks failed, error = -%d\n", -cmd.err);
return 0;
}
if (cmd.cmd_code == MMC_CMD_WRITE_MULTIPLE_BLOCK) {
cmd.cmd_code = MMC_CMD_STOP_TRANSMISSION;
cmd.resp_type = MMC_RSP_R1b;
cmd.arg = 0;
cmd.flags = 0;
if (mmc_send_cmd(host, &cmd, NULL)) {
pr_err("Failed to stop mulit-block write. err -%d\n", -cmd.err);
return 0;
}
}
return blkcnt;
}
u32 mmc_bwrite(struct aic_sdmc *host, u32 start, u32 blkcnt, const u8 *src)
{
u32 cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
do {
if (blocks_todo > host->dev->blk_max)
cur = host->dev->blk_max;
else
cur = blocks_todo;
if (mmc_write_blocks(host, src, start, cur) != cur)
return 0;
blocks_todo -= cur;
start += cur;
src += cur * host->dev->read_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
void mmc_setup_cfg(struct aic_sdmc *host)
{
host->dev->freq_min = SDMC_CLOCK_MIN;
host->dev->freq_max = SDMC_CLOCK_MAX;
host->dev->host_caps = MMC_MODE_HC;
host->dev->valid_ocr = MMC_VDD_32_33 | MMC_VDD_33_34;
host->dev->voltages = MMC_VDD_29_30 | MMC_VDD_30_31 | MMC_VDD_31_32 |
MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_34_35 |
MMC_VDD_35_36;
host->dev->flags = EXT_CSD_BUS_WIDTH_4 | EXT_CSD_SUP_SDIO_IRQ | EXT_CSD_SUP_HIGHSPEED | EXT_CSD_MUTBLKWRITE;
if (host->pdata->buswidth8)
host->dev->flags |= EXT_CSD_BUS_WIDTH_8;
host->dev->max_seg_size = 4096;
host->dev->max_dma_segs = 256;
host->dev->max_blk_size = 512;
host->dev->max_blk_count = 65535;
host->dev->blk_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
}
static int mmc_identification(struct aic_sdmc *host)
{
int err = 0;
/* CMD0 - Reset the Card */
err = mmc_go_idle(host);
if (err) {
pr_err("CMD0 failed, no card.\n");
return err;
}
/* Trying SDMC for eMMC: First try eMMC, if it is failed, then try SD Card */
if (host->index == 0) { // Try eMMC
err = mmc_send_op_cond(host);
if (err) {
/*
* CMD8 - SD_CMD_SEND_IF_COND
* Test for SD version 2 or later
*/
mmc_send_if_cond(host);
/*
* ACMD41 - SD_CMD_APP_SEND_OP_COND
* Now try to get the SD card's operating condition
*/
err = sd_send_op_cond(host); // Spend about 0.3 ms
}
if (err) {
pr_err("Unknown card type.\n");
return err;
}
/* Trying SDMC for SD: First try SD Card, if it is failed, then try eMMC */
} else { // Try SD Card
/* CMD8 - SD_CMD_SEND_IF_COND, Test for SD version 2 or later */
mmc_send_if_cond(host);
/*
* ACMD41 - SD_CMD_APP_SEND_OP_COND, Now try to get the SD card's operating
* condition
*/
err = sd_send_op_cond(host); // Spend about 0.3 ms
if (err) {
/* The card is not SD,then check if it is eMMC */
err = mmc_send_op_cond(host);
if (err) {
pr_err("Card did not respond to voltage select!\n");
return -1;
}
}
}
/* CMD2 - Put the Card in Identify Mode */
err = mmc_go_identify_mode(host);
if (err) {
pr_err("CMD2 failed.\n");
return err;
}
err = mmc_relative_addr(host);
return err;
}
struct aic_sdmc *find_mmc_dev_by_index(int id)
{
int i;
for (i = 0; i < MAX_MMC_DEV_NUM; i++) {
if (mmc_dev[i] && ((struct aic_sdmc *)mmc_dev[i])->index == id)
return mmc_dev[i];
}
return NULL;
}
s32 mmc_init(int id)
{
struct aic_sdmc *host = NULL;
struct aic_sdmc_pdata *pdata = NULL;
struct aic_sdmc_dev *dev = NULL;
int i, ret;
if (id < 0 || id > MAX_MMC_DEV_NUM - 1) {
pr_err("Invalid SDMC ID %d\n", id);
return -1;
}
if (mmc_dev[id]) {
pr_info("SDMC%d was already inited\n", id);
return 0;
}
host = malloc(sizeof(struct aic_sdmc));
if (!host) {
pr_err("Failed to malloc(%d)\n", (u32)sizeof(struct aic_sdmc));
return -1;
}
memset(host, 0, sizeof(struct aic_sdmc));
dev = malloc(sizeof(struct aic_sdmc_dev));
if (dev == NULL) {
pr_err("malloc dev failed.\n");
goto out;
}
memset(dev, 0, sizeof(struct aic_sdmc_dev));
for (i = 0; i < ARRAY_SIZE(sdmc_pdata); i++) {
if (sdmc_pdata[i].id == id) {
pdata = &sdmc_pdata[i];
break;
}
}
if (pdata == NULL)
goto out;
host->index = pdata->id;
host->irq = pdata->irq;
host->clk = pdata->clk;
host->host.base = (volatile void *)pdata->base;
host->pdata = pdata;
host->dev = dev;
mmc_dev[id] = host;
ret = aic_sdmc_clk_init(host);
if (ret)
goto out;
aicos_request_irq(host->irq, aic_sdmc_irq, 0, NULL, host);
host->host.fifoth_val = MSIZE(2) | RX_WMARK(7) | TX_WMARK(8);
host->host.is_sdio = pdata->is_sdio;
mmc_setup_cfg(host);
aic_sdmc_init(host);
pr_info("SDMC%d driver loaded\n", pdata->id);
ret = mmc_identification(host);
if (ret)
goto out;
ret = mmc_startup(host);
if (ret)
goto out;
return 0;
out:
if (host) {
free(host);
mmc_dev[id] = NULL;
}
if (dev)
free(dev);
return -1;
}
s32 mmc_deinit(int id)
{
struct aic_sdmc *p = (struct aic_sdmc *)mmc_dev[id];
if (id < 0 || id > MAX_MMC_DEV_NUM - 1) {
pr_err("Invalid SDMC ID %d\n", id);
return -1;
}
if (p == NULL) {
pr_info("SDMC%d was already deinited\n", id);
return 0;
}
if (p->dev)
free(p->dev);
if (p) {
free(p);
mmc_dev[id] = NULL;
}
return 0;
}