Files
luban-lite-t3e-pro/bsp/artinchip/drv_bare/boot_usbh/usb_ehci.c
刘可亮 3b4064f334 v1.0.2
2023-11-30 19:48:02 +08:00

1742 lines
52 KiB
C

/*
* Copyright (c) 2020-2022 Artinchip Technology Co., Ltd. All rights reserved.
*
* Dehuang Wu <dehuang.wu@artinchip.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <driver.h>
#include <aic_core.h>
#include <aic_hal.h>
#include <usbh_reg.h>
#include "usb_ehci.h"
#include "usbh_core.h"
#include <hal_syscfg.h>
#include <usb_defs.h>
//#define USBH_DEBUG 0
#define USB_EHCI_HCCR_BASE(id) (USB_HOST_REG_BASE(id))
/* Host Controller Capability Registers */
/* This is the set of interrupts handled by this driver */
#define EHCI_HANDLED_INTS (EHCI_INT_USBINT | EHCI_INT_USBERRINT | \
EHCI_INT_PORTSC | EHCI_INT_SYSERROR | \
EHCI_INT_AAINT)
#define false 0
#define true 1
struct usb_ehci_epinfo_s;
struct usb_ehci_qh_s {
/* Fields visible to hardware */
struct ehci_qh_s hw __attribute__((aligned(CACHE_LINE_SIZE))); /* Hardware representation of the queue head, 48 bytes */
struct usb_ehci_epinfo_s *epinfo; /* Endpoint used for the transfer */
/* Internal fields used by the EHCI driver */
u32 fqp; /* First qTD in the list (physical address) */
#if (__LONG_WIDTH__ == 32)
u8 pad[8]; /* Padding to assure 32-byte alignment */
#endif
};
/* This structure describes one endpoint. */
struct usb_ehci_epinfo_s {
u8 epno : 7; /* Endpoint number */
u8 dirin : 1; /* 1:IN endpoint 0:OUT endpoint */
u8 devaddr : 7; /* Device address */
u8 toggle : 1; /* Next data toggle */
bool inuse;
u8 status; /* Retained token status bits (for debug purposes) */
u16 maxpacket : 11; /* Maximum packet size */
u16 xfrtype : 2; /* See USB_EP_ATTR_XFER_* definitions in usb.h */
u16 speed : 2; /* See USB_*_SPEED definitions in ehci.h */
int result; /* The result of the transfer */
u32 xfrd; /* On completion, will hold the number of bytes transferred */
struct usbh_hubport *hport;
struct usb_ehci_qh_s *qh;
};
/* Internal representation of the EHCI Queue Element Transfer Descriptor
* (qTD)
*/
struct usb_ehci_qtd_s {
/* Fields visible to hardware */
struct ehci_qtd_s hw __attribute__((aligned(CACHE_LINE_SIZE))); /* Hardware representation of the queue head */
/* Internal fields used by the EHCI driver */
};
/* The following is used to manage lists of free QHs and qTDs */
struct usb_ehci_list_s {
struct usb_ehci_list_s *flink; /* Link to next entry in the list */
/* Variable length entry data follows */
};
/* List traversal callout functions */
typedef int (*foreach_qh_t)(struct usb_ehci_qh_s *qh, u32 **bp, void *arg);
typedef int (*foreach_qtd_t)(struct usb_ehci_qtd_s *qtd, u32 **bp, void *arg);
/* This structure retains the overall state of the USB host controller */
#define CONFIG_USBHOST_PIPE_NUM (3) // EP0, in, out
#define CONFIG_USB_EHCI_QH_NUM (1)
#define CONFIG_USB_EHCI_QTD_NUM (3)
struct ehci_hcd {
/* Queue Head (QH) pool */
__attribute__((aligned(CACHE_LINE_SIZE))) struct usb_ehci_qh_s qhpool[CONFIG_USB_EHCI_QH_NUM];
/* Queue Element Transfer Descriptor (qTD) pool */
__attribute__((aligned(CACHE_LINE_SIZE))) struct usb_ehci_qtd_s qtdpool[CONFIG_USB_EHCI_QTD_NUM];
/* List of free Queue Head (QH) structures */
struct usb_ehci_list_s *qhfree;
/* List of free Queue Element Transfer Descriptor (qTD) */
struct usb_ehci_list_s *qtdfree;
struct usb_ehci_epinfo_s chan[CONFIG_USBHOST_PIPE_NUM];
};
struct ehci_hcd g_ehci_hcd __attribute__((aligned(CACHE_LINE_SIZE)));
struct usb_ehci_qh_s g_asynchead __attribute__((aligned(CACHE_LINE_SIZE)));
static void usb_ehci_qh_free(struct usb_ehci_qh_s *qh);
static void usb_ehci_qtd_free(struct usb_ehci_qtd_s *qtd);
static int usb_ehci_reset(int id);
static int usb_ehci_wait_usbsts(int id, u32 maskbits, u32 donebits, u32 delay);
#ifdef USBH_DEBUG
void dump_hcor(volatile struct ehci_hcor_s *hcor)
{
pr_err("usbcmd:0x%x\n", readl(&hcor->usbcmd));
pr_err("usbsts:0x%x\n", readl(&hcor->usbsts));
pr_err("usbintr:0x%x\n", readl(&hcor->usbintr));
pr_err("frindex:0x%x\n", readl(&hcor->frindex));
pr_err("ctrldssegment:0x%x\n", readl(&hcor->ctrldssegment));
pr_err("periodiclistbase:0x%x\n", readl(&hcor->periodiclistbase));
pr_err("asynclistaddr:0x%x\n", readl(&hcor->asynclistaddr));
pr_err("configflag:0x%x\n", readl(&hcor->configflag));
pr_err("portsc[0]:0x%x\n\n", readl(&hcor->portsc[0]));
}
void dump_qtd(struct usb_ehci_qtd_s *qtd)
{
u32 addr;
pr_err("qTD 0x%x:\n", (u32)(uintptr_t)qtd);
pr_err(" nqp: (0x%x)\n", qtd->hw.nqp);
pr_err(" alt: (0x%x)\n", qtd->hw.alt);
pr_err(" token: (0x%x)\n", qtd->hw.token);
pr_err(" bpl0: (0x%x)\n", qtd->hw.bpl[0]);
pr_err(" bpl1: (0x%x)\n", qtd->hw.bpl[1]);
pr_err(" bpl2: (0x%x)\n", qtd->hw.bpl[2]);
pr_err(" bpl3: (0x%x)\n", qtd->hw.bpl[3]);
pr_err(" bpl4: (0x%x)\n", qtd->hw.bpl[4]);
addr = qtd->hw.nqp & 0xFFFFFFFC;
if (addr)
dump_qtd((void *)(uintptr_t)addr);
}
void dump_qh(struct usb_ehci_qh_s *qh)
{
u32 qtd;
pr_err("Queue Head 0x%x, sizeof qh %d %d %d:\n", (u32)(uintptr_t)qh,
(int)sizeof(*qh), (int)sizeof(struct usb_ehci_qh_s),
(int)sizeof(struct ehci_qh_s));
pr_err("HW part:\n");
pr_err(" qhlp: (0x%x, TYP=%x,T=%d)\n", qh->hw.hlp & 0xFFFFFFE0,
(qh->hw.hlp & 0x6) >> 1, qh->hw.hlp & 1);
pr_err(" epchar: (0x%x)\n", qh->hw.epchar);
pr_err(" epcaps: (0x%x)\n", qh->hw.epcaps);
pr_err(" cqp: (0x%x)\n", qh->hw.cqp);
pr_err(" overlay: \n");
pr_err(" nqp: (0x%x)\n", qh->hw.overlay.nqp);
pr_err(" alt: (0x%x)\n", qh->hw.overlay.alt);
pr_err(" token: (0x%x)\n", qh->hw.overlay.token);
pr_err(" bpl0: (0x%x)\n", qh->hw.overlay.bpl[0]);
pr_err(" bpl1: (0x%x)\n", qh->hw.overlay.bpl[1]);
pr_err(" bpl2: (0x%x)\n", qh->hw.overlay.bpl[2]);
pr_err(" bpl3: (0x%x)\n", qh->hw.overlay.bpl[3]);
pr_err(" bpl4: (0x%x)\n", qh->hw.overlay.bpl[4]);
pr_err("fqp: (0x%x)\n", qh->fqp);
pr_err("epinfo: (0x%x)\n", (u32)(uintptr_t)qh->epinfo);
qtd = qh->hw.overlay.nqp & 0xFFFFFFFC;
if (qtd)
dump_qtd((void *)(uintptr_t)qtd);
}
#else
void dump_hcor(volatile struct ehci_hcor_s *hcor)
{
}
void dump_qtd(struct usb_ehci_qtd_s *qtd)
{
}
void dump_qh(struct usb_ehci_qh_s *qh)
{
}
#endif
int usb_hc_sw_init(void)
{
memset(&g_ehci_hcd, 0, sizeof(struct ehci_hcd));
/* Initialize the list of free Queue Head (QH) structures */
for (u8 i = 0; i < CONFIG_USB_EHCI_QH_NUM; i++) {
/* Put the QH structure in a free list */
usb_ehci_qh_free(&g_ehci_hcd.qhpool[i]);
}
/* Initialize the list of free Queue Head (QH) structures */
for (u8 i = 0; i < CONFIG_USB_EHCI_QTD_NUM; i++) {
/* Put the QH structure in a free list */
usb_ehci_qtd_free(&g_ehci_hcd.qtdpool[i]);
}
return 0;
}
void usb_hc_low_level_init(int id)
{
u32 val, clk_usbh, clk_usb_phy; //, reset_usbphy, reset_usbh;
if (id == 0)
syscfg_usb_phy0_sw_host(1); /* Switch to HOST mode */
/* Enable clock */
clk_usbh = CLK_USBH0 + id;
hal_clk_enable_deassertrst_iter(clk_usbh);
clk_usb_phy = CLK_USB_PHY0 + id;
hal_clk_enable_deassertrst_iter(clk_usb_phy);
/* set phy type: UTMI/ULPI */
val = readl(USBH_REG_HOST_CTL(id));
writel((val | 0x1), USBH_REG_HOST_CTL(id));
}
int usb_hc_hw_init(int id)
{
volatile struct ehci_hcor_s *hcor;
int ret;
u32 regval;
u32 physaddr1;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
usb_hc_low_level_init(id);
/* Initialize the head of the asynchronous queue/reclamation list.
*
* "In order to communicate with devices via the asynchronous schedule,
* system software must write the ASYNDLISTADDR register with the address
* of a control or bulk queue head. Software must then enable the
* asynchronous schedule by writing a one to the Asynchronous Schedule
* Enable bit in the USBCMD register. In order to communicate with devices
* via the periodic schedule, system software must enable the periodic
* schedule by writing a one to the Periodic Schedule Enable bit in the
* USBCMD register. Note that the schedules can be turned on before the
* first port is reset (and enabled)."
*/
memset(&g_asynchead, 0, sizeof(struct usb_ehci_qh_s));
physaddr1 = (u32)(uintptr_t)&g_asynchead;
g_asynchead.hw.hlp = physaddr1 | QH_HLP_TYP_QH;
g_asynchead.hw.epchar = (QH_EPCHAR_H | QH_EPCHAR_EPS_FULL);
g_asynchead.hw.overlay.nqp = (QH_NQP_T);
g_asynchead.hw.overlay.alt = (QH_NQP_T);
g_asynchead.hw.overlay.token = (QH_TOKEN_HALTED);
g_asynchead.fqp = (QTD_NQP_T);
aicos_dcache_clean_range((void *)(uintptr_t)&g_asynchead.hw,
sizeof(struct usb_ehci_qh_s));
/* Host Controller Initialization. Paragraph 4.1 */
/* Reset the EHCI hardware */
ret = usb_ehci_reset(id);
if (ret < 0) {
pr_err("ehci reset failed.\n");
return -1;
}
/* Disable all interrupts */
writel(0, &hcor->usbintr);
/* Clear pending interrupts. Bits in the USBSTS register are cleared by
* writing a '1' to the corresponding bit.
*/
writel(EHCI_INT_ALLINTS, &hcor->usbsts);
/* Set the Current Asynchronous List Address. */
writel(physaddr1, &hcor->asynclistaddr);
/* Enable the asynchronous schedule and, possibly enable the periodic
* schedule and set the frame list size.
*/
regval = readl(&hcor->usbcmd);
regval &= ~(EHCI_USBCMD_HCRESET | EHCI_USBCMD_FLSIZE_MASK |
EHCI_USBCMD_PSEN | EHCI_USBCMD_ASEN | EHCI_USBCMD_IAADB);
regval |= EHCI_USBCMD_ASEN;
writel(regval, &hcor->usbcmd);
/* Start the host controller by setting the RUN bit in the USBCMD register. */
regval = readl(&hcor->usbcmd);
regval |= EHCI_USBCMD_RUN;
writel(regval, &hcor->usbcmd);
/* Route all ports to this host controller by setting the CONFIG flag. */
regval = readl(&hcor->configflag);
regval |= EHCI_CONFIGFLAG;
writel(regval, &hcor->configflag);
/* Wait for the EHCI to run (i.e., no longer report halted) */
ret = usb_ehci_wait_usbsts(id, EHCI_USBSTS_HALTED, 0, 100 * 1000);
if (ret < 0) {
pr_err("Wait ehci run timeout.\n");
return -2;
}
/* Enable port power */
regval = readl(&hcor->portsc[0]);
regval |= EHCI_PORTSC_PP;
writel(regval, &hcor->portsc[0]);
/* Enable EHCI interrupts. Interrupts are still disabled at the level of
* the interrupt controller.
*/
writel(EHCI_HANDLED_INTS, &hcor->usbintr);
return ret;
}
int usb_hc_hw_fast_init(int id)
{
volatile struct ehci_hcor_s *hcor;
int ret;
u32 regval;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
usb_hc_low_level_init(id);
/* Reset the EHCI hardware */
ret = usb_ehci_reset(id);
if (ret < 0) {
pr_err("ehci reset failed.\n");
return -1;
}
/* Disable all interrupts */
writel(0, &hcor->usbintr);
/* Clear pending interrupts. Bits in the USBSTS register are cleared by
* writing a '1' to the corresponding bit.
*/
writel(EHCI_INT_ALLINTS, &hcor->usbsts);
/* Start the host controller by setting the RUN bit in the USBCMD register. */
regval = readl(&hcor->usbcmd);
regval |= EHCI_USBCMD_RUN;
writel(regval, &hcor->usbcmd);
/* Route all ports to this host controller by setting the CONFIG flag. */
regval = readl(&hcor->configflag);
regval |= EHCI_CONFIGFLAG;
writel(regval, &hcor->configflag);
/* Wait for the EHCI to run (i.e., no longer report halted) */
ret = usb_ehci_wait_usbsts(id, EHCI_USBSTS_HALTED, 0, 100 * 1000);
if (ret < 0) {
pr_err("Wait ehci run timeout.\n");
return -2;
}
/* Enable port power */
regval = readl(&hcor->portsc[0]);
regval |= EHCI_PORTSC_PP;
writel(regval, &hcor->portsc[0]);
/* Enable EHCI interrupts. Interrupts are still disabled at the level of
* the interrupt controller.
*/
writel(EHCI_HANDLED_INTS, &hcor->usbintr);
return ret;
}
static int usb_ehci_chan_alloc(void)
{
int chidx;
/* Search the table of channels */
for (chidx = 0; chidx < CONFIG_USBHOST_PIPE_NUM; chidx++) {
/* Is this channel available? */
if (!g_ehci_hcd.chan[chidx].inuse) {
/* Yes... make it "in use" and return the index */
g_ehci_hcd.chan[chidx].inuse = true;
return chidx;
}
}
pr_debug("%s, line %d: EBUSY.\n", __func__, __LINE__);
/* All of the channels are "in-use" */
return -EBUSY;
}
static void usb_ehci_chan_free(struct usb_ehci_epinfo_s *chan)
{
/* Mark the channel available */
chan->inuse = false;
}
static struct usb_ehci_qh_s *usb_ehci_qh_alloc(void)
{
struct usb_ehci_qh_s *qh;
/* Remove the QH structure from the freelist */
qh = (struct usb_ehci_qh_s *)g_ehci_hcd.qhfree;
if (qh) {
g_ehci_hcd.qhfree = ((struct usb_ehci_list_s *)qh)->flink;
memset(qh, 0, sizeof(struct usb_ehci_qh_s));
}
return qh;
}
static void usb_ehci_qh_free(struct usb_ehci_qh_s *qh)
{
struct usb_ehci_list_s *entry = (struct usb_ehci_list_s *)qh;
/* Put the QH structure back into the free list */
entry->flink = g_ehci_hcd.qhfree;
g_ehci_hcd.qhfree = entry;
}
static struct usb_ehci_qtd_s *usb_ehci_qtd_alloc(void)
{
struct usb_ehci_qtd_s *qtd;
/* Remove the qTD from the freelist */
qtd = (struct usb_ehci_qtd_s *)g_ehci_hcd.qtdfree;
if (qtd) {
g_ehci_hcd.qtdfree = ((struct usb_ehci_list_s *)qtd)->flink;
memset(qtd, 0, sizeof(struct usb_ehci_qtd_s));
}
return qtd;
}
static void usb_ehci_qtd_free(struct usb_ehci_qtd_s *qtd)
{
struct usb_ehci_list_s *entry = (struct usb_ehci_list_s *)qtd;
/* Put the qTD back into the free list */
entry->flink = g_ehci_hcd.qtdfree;
g_ehci_hcd.qtdfree = entry;
}
static int usb_ehci_qh_foreach(struct usb_ehci_qh_s *qh, u32 **bp,
foreach_qh_t handler, void *arg)
{
struct usb_ehci_qh_s *next;
u32 physaddr;
int ret;
while (qh) {
/* Is this the end of the list? Check the horizontal link pointer
* (HLP) terminate (T) bit. If T==1, then the HLP address is not
* valid.
*/
physaddr = (qh->hw.hlp);
if ((physaddr & QH_HLP_T) != 0) {
/* Set the next pointer to NULL. This will terminate the loop. */
next = NULL;
} else if ((physaddr & QH_HLP_MASK) == (u32)(uintptr_t)&g_asynchead) {
/* Is the next QH the asynchronous list head which will always be at
* the end of the asynchronous queue?
*/
/* That will also terminate the loop */
next = NULL;
} else {
/* Otherwise, there is a QH structure after this one that describes
* another transaction.
*/
physaddr = (qh->hw.hlp) & QH_HLP_MASK;
next = (struct usb_ehci_qh_s *)(uintptr_t)(physaddr);
}
/* Perform the user action on this entry. The action might result in
* unlinking the entry! But that is okay because we already have the
* next QH pointer.
*
* Notice that we do not manage the back pointer (bp). If the callout
* uses it, it must update it as necessary.
*/
ret = handler(qh, bp, arg);
/* If the handler returns any non-zero value, then terminate the
* traversal early.
*/
if (ret != 0) {
return ret;
}
/* Set up to visit the next entry */
qh = next;
}
return 0;
}
static int usb_ehci_qtd_foreach(struct usb_ehci_qh_s *qh, foreach_qtd_t handler,
void *arg)
{
struct usb_ehci_qtd_s *qtd;
struct usb_ehci_qtd_s *next;
u32 physaddr;
u32 *bp;
int ret;
/* Handle the special case where the queue is empty */
bp = &qh->fqp; /* Start of qTDs in original list */
physaddr = (*bp); /* Physical address of first qTD in CPU order */
if ((physaddr & QTD_NQP_T) != 0) {
return 0;
}
/* Start with the first qTD in the list */
qtd = (struct usb_ehci_qtd_s *)(uintptr_t)(physaddr);
next = NULL;
/* And loop until we encounter the end of the qTD list */
while (qtd) {
/* Is this the end of the list? Check the next qTD pointer (NQP)
* terminate (T) bit. If T==1, then the NQP address is not valid.
*/
if (((qtd->hw.nqp) & QTD_NQP_T) != 0) {
/* Set the next pointer to NULL. This will terminate the loop. */
next = NULL;
} else {
physaddr = (qtd->hw.nqp) & QTD_NQP_NTEP_MASK;
next = (struct usb_ehci_qtd_s *)(uintptr_t)(physaddr);
}
/* Perform the user action on this entry. The action might result in
* unlinking the entry! But that is okay because we already have the
* next qTD pointer.
*
* Notice that we do not manage the back pointer (bp). If the call-
* out uses it, it must update it as necessary.
*/
ret = handler(qtd, &bp, arg);
/* If the handler returns any non-zero value, then terminate the
* traversal early.
*/
if (ret != 0) {
return ret;
}
/* Set up to visit the next entry */
qtd = next;
}
return 0;
}
static int usb_ehci_qtd_discard(struct usb_ehci_qtd_s *qtd, u32 **bp, void *arg)
{
aicos_dcache_clean_invalid_range((void *)&qtd->hw,
sizeof(struct usb_ehci_qtd_s));
/* Remove the qTD from the list by updating the forward pointer to skip
* around this qTD. We do not change that pointer because are repeatedly
* removing the aTD at the head of the QH list.
*/
**bp = qtd->hw.nqp;
/* Then free the qTD */
usb_ehci_qtd_free(qtd);
return 0;
}
static int usb_ehci_qh_discard(struct usb_ehci_qh_s *qh)
{
int ret;
aicos_dcache_clean_invalid_range((void *)&qh->hw,
sizeof(struct usb_ehci_qh_s));
/* Free all of the qTD's attached to the QH */
ret = usb_ehci_qtd_foreach(qh, usb_ehci_qtd_discard, NULL);
/* Then free the QH itself */
usb_ehci_qh_free(qh);
return ret;
}
#define EHCI_FULL_SPEED (0) /* Full-Speed (12Mbs) */
#define EHCI_LOW_SPEED (1) /* Low-Speed (1.5Mbs) */
#define EHCI_HIGH_SPEED (2) /* High-Speed (480 Mb/s) */
static inline u8 usb_ehci_speed(u8 usbspeed)
{
u8 g_ehci_speed[4] = { 0, EHCI_LOW_SPEED, EHCI_FULL_SPEED,
EHCI_HIGH_SPEED };
return g_ehci_speed[usbspeed];
}
static struct usb_ehci_qh_s *
usb_ehci_qh_create(struct usb_ehci_epinfo_s *epinfo)
{
struct usb_ehci_qh_s *qh;
u32 regval;
u8 hubaddr;
u8 hubport;
struct usb_ehci_epinfo_s *ep0info;
struct usbh_hubport *rhport;
rhport = epinfo->hport;
ep0info = (struct usb_ehci_epinfo_s *)rhport->ep0;
/* Allocate a new queue head structure */
qh = usb_ehci_qh_alloc();
if (qh == NULL) {
return NULL;
}
/* Save the endpoint information with the QH itself */
qh->epinfo = epinfo;
/* Write QH endpoint characteristics:
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* DEVADDR Device address Endpoint structure
* I Inactivate on Next Transaction 0
* ENDPT Endpoint number Endpoint structure
* EPS Endpoint speed Endpoint structure
* DTC Data toggle control 1
* MAXPKT Max packet size Endpoint structure
* C Control endpoint Calculated
* RL NAK count reloaded 0
*/
regval = ((u32)epinfo->devaddr << QH_EPCHAR_DEVADDR_SHIFT) |
((u32)epinfo->epno << QH_EPCHAR_ENDPT_SHIFT) |
((u32)usb_ehci_speed(epinfo->speed) << QH_EPCHAR_EPS_SHIFT) |
QH_EPCHAR_DTC |
((u32)epinfo->maxpacket << QH_EPCHAR_MAXPKT_SHIFT) |
((u32)0 << QH_EPCHAR_RL_SHIFT);
/* Paragraph 3.6.3: "Control Endpoint Flag (C). If the QH.EPS field
* indicates the endpoint is not a high-speed device, and the endpoint
* is an control endpoint, then software must set this bit to a one.
* Otherwise it should always set this bit to a zero."
*/
if (epinfo->speed != USB_SPEED_HIGH &&
epinfo->xfrtype == USB_ENDPOINT_TYPE_CONTROL) {
regval |= QH_EPCHAR_C;
}
/* Save the endpoint characteristics word with the correct byte order */
qh->hw.epchar = (regval);
/* Write QH endpoint capabilities
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* SSMASK Interrupt Schedule Mask Depends on epinfo->xfrtype
* SCMASK Split Completion Mask 0
* HUBADDR Hub Address roothub port devaddr
* PORT Port number RH port index
* MULT High band width multiplier 1
*/
hubaddr = ep0info->devaddr;
hubport = rhport->port;
regval = ((u32)hubaddr << QH_EPCAPS_HUBADDR_SHIFT) |
((u32)hubport << QH_EPCAPS_PORT_SHIFT) |
((u32)1 << QH_EPCAPS_MULT_SHIFT);
qh->hw.epcaps = (regval);
/* Mark this as the end of this list. This will be overwritten if/when the
* next qTD is added to the queue.
*/
qh->hw.hlp = (QH_HLP_T);
qh->hw.overlay.nqp = (QH_NQP_T);
qh->hw.overlay.alt = (QH_AQP_T);
return qh;
}
int usbh_ep_alloc(usbh_epinfo_t *ep, const struct usbh_endpoint_cfg *ep_cfg)
{
struct usb_ehci_epinfo_s *epinfo;
struct usbh_hubport *hport;
int chidx;
hport = ep_cfg->hport;
chidx = usb_ehci_chan_alloc();
if (chidx < 0) {
pr_err("%s, line %d: NOMEM.\n", __func__, __LINE__);
return -ENOMEM;
}
epinfo = &g_ehci_hcd.chan[chidx];
memset(epinfo, 0, sizeof(struct usb_ehci_epinfo_s));
epinfo->epno = ep_cfg->ep_addr & 0x7f;
epinfo->dirin = (ep_cfg->ep_addr & 0x80) ? 1 : 0;
epinfo->devaddr = hport->dev_addr;
epinfo->maxpacket = ep_cfg->ep_mps;
epinfo->xfrtype = ep_cfg->ep_type;
epinfo->speed = hport->speed;
epinfo->hport = hport;
/* restore variable */
epinfo->inuse = true;
*ep = (usbh_epinfo_t)epinfo;
return 0;
}
int usbh_ep_free(usbh_epinfo_t ep)
{
struct usb_ehci_epinfo_s *epinfo = (struct usb_ehci_epinfo_s *)ep;
usb_ehci_chan_free(epinfo);
return 0;
}
static int usb_ehci_reset(int id)
{
u32 regval = 0;
u64 start_us;
volatile struct ehci_hcor_s *hcor;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
/* Make sure that the EHCI is halted: "When [the Run/Stop] bit is set to
* 0, the Host Controller completes the current transaction on the USB and
* then halts. The HC Halted bit in the status register indicates when the
* Host Controller has finished the transaction and has entered the
* stopped state..."
*/
writel(0, &hcor->usbcmd);
/* "... Software should not set [HCRESET] to a one when the HCHalted bit in
* the USBSTS register is a zero. Attempting to reset an actively running
* host controller will result in undefined behavior."
*/
start_us = aic_get_time_us();
do {
/* Wait and update the timeout counter */
if ((aic_get_time_us() - start_us) > 1000)
break;
/* Get the current value of the USBSTS register. This loop will
* terminate when either the timeout exceeds one millisecond or when
* the HCHalted bit is no longer set in the USBSTS register.
*/
regval = readl(&hcor->usbsts);
} while ((regval & EHCI_USBSTS_HALTED) == 0);
/* Is the EHCI still running? Did we timeout? */
if ((regval & EHCI_USBSTS_HALTED) == 0) {
pr_err("Wait ehci halt timeout.\n");
return -ETIMEDOUT;
}
/* Now we can set the HCReset bit in the USBCMD register to
* initiate the reset
*/
regval = readl(&hcor->usbcmd);
regval |= EHCI_USBCMD_HCRESET;
writel(regval, &hcor->usbcmd);
/* Wait for the HCReset bit to become clear */
start_us = aic_get_time_us();
do {
/* Wait and update the timeout counter */
if ((aic_get_time_us() - start_us) > 1000)
break;
/* Get the current value of the USBCMD register. This loop will
* terminate when either the timeout exceeds one second or when the
* HCReset bit is no longer set in the USBSTS register.
*/
regval = readl(&hcor->usbcmd);
} while ((regval & EHCI_USBCMD_HCRESET) != 0);
/* Return either success or a timeout */
return (regval & EHCI_USBCMD_HCRESET) != 0 ? -ETIMEDOUT : 0;
}
static int usb_ehci_wait_usbsts(int id, u32 maskbits, u32 donebits, u32 timeout)
{
u32 regval;
u32 start, cur;
volatile struct ehci_hcor_s *hcor;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
start = aic_get_time_us();
do {
/* Read the USBSTS register and check for a system error */
regval = readl(&hcor->usbsts);
if ((regval & EHCI_INT_SYSERROR) != 0) {
return -EIO;
}
/* Mask out the bits of interest */
regval &= maskbits;
cur = aic_get_time_us();
/* Loop until the masked bits take the specified value or until a
* timeout occurs.
*/
if (!(regval != donebits))
break;
} while ((cur - start) < timeout);
/* We got here because either the waited for condition or a timeout
* occurred. Return a value to indicate which.
*/
return (regval == donebits) ? 0 : -ETIMEDOUT;
}
int usbh_portchange_wait(int id)
{
u32 usbsts, pending, regval;
u64 start_us;
volatile struct ehci_hcor_s *hcor;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
start_us = aic_get_time_us();
do {
/* Read Interrupt Status and mask out interrupts that are not enabled. */
usbsts = readl(&hcor->usbsts);
regval = readl(&hcor->usbintr);
/* Handle all unmasked interrupt sources */
pending = usbsts & regval;
/* Clear all pending interrupts */
writel(usbsts & EHCI_INT_ALLINTS, &hcor->usbsts);
if ((pending & EHCI_INT_PORTSC) != 0) {
pr_warn("Port status changed.\n");
return 0;
}
} while ((aic_get_time_us() - start_us) < 1000);
return -1;
}
int usbh_get_port_connect_status(int id, int port)
{
u32 portsc;
bool connected = false;
volatile struct ehci_hcor_s *hcor;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
if (port <= 0) {
pr_err("port id not correct %d\n", port);
return false;
}
/* Only one root hub port */
portsc = readl(&hcor->portsc[port - 1]);
/* Handle port connection status change (CSC) events */
if ((portsc & EHCI_PORTSC_CSC) != 0) {
if ((portsc & EHCI_PORTSC_CCS) == EHCI_PORTSC_CCS) {
/* Connected ... Did we just become connected? */
pr_warn("port connected\n");
connected = true;
} else {
pr_warn("port disconnected\n");
connected = false;
}
}
/* Clear all pending port interrupt sources by writing a '1' to the
* corresponding bit in the PORTSC register. In addition, we need
* to preserve the values of all R/W bits (RO bits don't matter)
*/
writel(portsc, &hcor->portsc[port - 1]);
return connected;
}
int usbh_reset_port(int port, int id)
{
u64 start_us;
u32 regval;
volatile struct ehci_hcor_s *hcor;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
regval = readl(&hcor->portsc[port - 1]);
regval &= ~EHCI_PORTSC_PE;
regval |= EHCI_PORTSC_RESET;
writel(regval, &hcor->portsc[port - 1]);
aic_mdelay(3);
regval = readl(&hcor->portsc[port - 1]);
regval &= ~EHCI_PORTSC_RESET;
writel(regval, &hcor->portsc[port - 1]);
/* Wait for the port reset to complete
*
* Paragraph 2.3.9:
*
* "Note that when software writes a zero to this bit there may be a
* delay before the bit status changes to a zero. The bit status will
* not read as a zero until after the reset has completed. If the port
* is in high-speed mode after reset is complete, the host controller
* will automatically enable this port (e.g. set the Port Enable bit
* to a one). A host controller must terminate the reset and stabilize
* the state of the port within 2 milliseconds of software transitioning
* this bit from a one to a zero ..."
*/
start_us = aic_get_time_us();
while ((readl(&hcor->portsc[port - 1]) & EHCI_PORTSC_RESET) != 0) {
if ((aic_get_time_us() - start_us) > 3000)
return -ETIMEDOUT;
}
return 0;
}
u8 usbh_get_port_speed(int id)
{
/* Defined by individual manufacturers */
u32 regval;
volatile struct ehci_hcor_s *hcor;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
regval = readl(&hcor->portsc[0]);
if ((regval & EHCI_PORTSC_LSTATUS_MASK) == EHCI_PORTSC_LSTATUS_KSTATE) {
pr_err("USB_SPEED_LOW\n");
return USB_SPEED_LOW;
}
if (regval & EHCI_PORTSC_PE) {
pr_err("USB_SPEED_HIGH\n");
return USB_SPEED_HIGH;
}
pr_info("USB_SPEED_FULL\n");
return USB_SPEED_FULL;
}
int usbh_ep0_reconfigure(usbh_epinfo_t ep, u8 dev_addr, u8 ep_mps, u8 speed)
{
struct usb_ehci_epinfo_s *epinfo;
int ret = 0;
epinfo = (struct usb_ehci_epinfo_s *)ep;
epinfo->devaddr = dev_addr;
epinfo->speed = speed;
epinfo->maxpacket = ep_mps;
return ret;
}
static int usb_ehci_qtd_addbpl(struct usb_ehci_qtd_s *qtd, const void *buffer,
u32 buflen)
{
u32 physaddr, nbytes, next, ndx;
aicos_dcache_clean_invalid_range((void *)buffer, buflen);
physaddr = (u32)(uintptr_t)buffer;
for (ndx = 0; ndx < 5; ndx++) {
/* Write the physical address of the buffer into the qTD buffer
* pointer list.
*/
qtd->hw.bpl[ndx] = (physaddr);
/* Get the next buffer pointer (in the case where we will have to
* transfer more then one chunk). This buffer must be aligned to a
* 4KB address boundary.
*/
next = (physaddr + 4096) & ~4095;
/* How many bytes were included in the last buffer? Was it the whole
* thing?
*/
nbytes = next - physaddr;
if (nbytes >= buflen) {
/* Yes... it was the whole thing. Break out of the loop early. */
break;
}
/* Adjust the buffer length and physical address for the next time
* through the loop.
*/
buflen -= nbytes;
physaddr = next;
}
/* Handle the case of a huge buffer > 4*4KB = 16KB */
if (ndx >= 5) {
pr_err("%s, line %d\n", __func__, __LINE__);
return -EFBIG;
}
return 0;
}
static struct usb_ehci_qtd_s *usb_ehci_qtd_setupphase(struct usb_ehci_epinfo_s *epinfo,
struct usb_setup_packet *setup)
{
struct usb_ehci_qtd_s *qtd;
u32 regval;
int ret;
/* Allocate a new Queue Element Transfer Descriptor (qTD) */
qtd = usb_ehci_qtd_alloc();
if (qtd == NULL) {
return NULL;
}
/* Mark this as the end of the list (this will be overwritten if another
* qTD is added after this one).
*/
qtd->hw.nqp = (QTD_NQP_T);
qtd->hw.alt = (QTD_AQP_T);
/* Write qTD token:
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* STATUS Status QTD_TOKEN_ACTIVE
* PID PID Code QTD_TOKEN_PID_SETUP
* CERR Error Counter 3
* CPAGE Current Page 0
* IOC Interrupt on complete 0
* NBYTES Total Bytes to Transfer 8
* TOGGLE Data Toggle 0
*/
regval = QTD_TOKEN_ACTIVE | QTD_TOKEN_PID_SETUP |
((u32)3 << QTD_TOKEN_CERR_SHIFT) |
((u32)8 << QTD_TOKEN_NBYTES_SHIFT);
qtd->hw.token = (regval);
/* Add the buffer data */
ret = usb_ehci_qtd_addbpl(qtd, (u8 *)setup, 8);
if (ret < 0) {
usb_ehci_qtd_free(qtd);
return NULL;
}
/* Add the data transfer size to the count in the epinfo structure */
epinfo->xfrd += 8;
return qtd;
}
static struct usb_ehci_qtd_s *usb_ehci_qtd_dataphase(struct usb_ehci_epinfo_s *epinfo, void *buffer,
int buflen, u32 tokenbits)
{
struct usb_ehci_qtd_s *qtd;
u32 regval;
int ret;
/* Allocate a new Queue Element Transfer Descriptor (qTD) */
qtd = usb_ehci_qtd_alloc();
if (qtd == NULL) {
pr_err("%s qtd null\n", __func__);
return NULL;
}
/* Mark this as the end of the list (this will be overwritten if another
* qTD is added after this one).
*/
qtd->hw.nqp = (QTD_NQP_T);
qtd->hw.alt = (QTD_AQP_T);
/* Write qTD token:
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* STATUS Status QTD_TOKEN_ACTIVE
* PID PID Code Contained in tokenbits
* CERR Error Counter 3
* CPAGE Current Page 0
* IOC Interrupt on complete Contained in tokenbits
* NBYTES Total Bytes to Transfer buflen
* TOGGLE Data Toggle Contained in tokenbits
*/
regval = tokenbits | QTD_TOKEN_ACTIVE | ((u32)3 << QTD_TOKEN_CERR_SHIFT) |
((u32)buflen << QTD_TOKEN_NBYTES_SHIFT);
qtd->hw.token = (regval);
ret = usb_ehci_qtd_addbpl(qtd, buffer, buflen);
if (ret < 0) {
pr_err("%s qtd addbpl failed\n", __func__);
usb_ehci_qtd_free(qtd);
return NULL;
}
/* Add the data transfer size to the count in the epinfo structure */
epinfo->xfrd += buflen;
return qtd;
}
static struct usb_ehci_qtd_s *usb_ehci_qtd_statusphase(u32 tokenbits)
{
struct usb_ehci_qtd_s *qtd;
u32 regval;
/* Allocate a new Queue Element Transfer Descriptor (qTD) */
qtd = usb_ehci_qtd_alloc();
if (qtd == NULL) {
return NULL;
}
/* Mark this as the end of the list (this will be overwritten if another
* qTD is added after this one).
*/
qtd->hw.nqp = (QTD_NQP_T);
qtd->hw.alt = (QTD_AQP_T);
/* Write qTD token:
*
* FIELD DESCRIPTION VALUE/SOURCE
* -------- ------------------------------- --------------------
* STATUS Status QTD_TOKEN_ACTIVE
* PID PID Code Contained in tokenbits
* CERR Error Counter 3
* CPAGE Current Page 0
* IOC Interrupt on complete QTD_TOKEN_IOC
* NBYTES Total Bytes to Transfer 0
* TOGGLE Data Toggle Contained in tokenbits
*/
regval = tokenbits | QTD_TOKEN_ACTIVE | QTD_TOKEN_IOC |
((u32)3 << QTD_TOKEN_CERR_SHIFT);
qtd->hw.token = (regval);
return qtd;
}
static int usb_ehci_qtd_flush(struct usb_ehci_qtd_s *qtd, u32 **bp, void *arg)
{
/* Flush the D-Cache, i.e., make the contents of the memory match the
* contents of the D-Cache in the specified address range and invalidate
* the D-Cache to force re-loading of the data from memory when next
* accessed.
*/
aicos_dcache_clean_invalid_range((void *)(uintptr_t)&qtd->hw,
sizeof(struct ehci_qtd_s));
return 0;
}
static int usb_ehci_qh_flush(struct usb_ehci_qh_s *qh)
{
/* Flush the QH first. This will write the contents of the D-cache to RAM
* and invalidate the contents of the D-cache so that the next access will
* be reloaded from D-Cache.
*/
aicos_dcache_clean_invalid_range((void *)(uintptr_t)&qh->hw, sizeof(struct ehci_qh_s));
/* Then flush all of the qTD entries in the queue */
return usb_ehci_qtd_foreach(qh, usb_ehci_qtd_flush, NULL);
}
static void usb_ehci_qh_enqueue(struct usb_ehci_qh_s *qhead,
struct usb_ehci_qh_s *qh)
{
u32 physaddr;
/* Set the internal fqp field. When we transverse the QH list later,
* we need to know the correct place to start because the overlay may no
* longer point to the first qTD entry.
*/
qh->fqp = qh->hw.overlay.nqp;
/* Add the new QH to the head of the asynchronous queue list.
*
* First, attach the old head as the new QH HLP and flush the new QH and
* its attached qTDs to RAM.
*/
qh->hw.hlp = qhead->hw.hlp;
usb_ehci_qh_flush(qh);
/* Then set the new QH as the first QH in the asynchronous queue */
physaddr = (u32)(uintptr_t)qh;
qhead->hw.hlp = (physaddr | QH_HLP_TYP_QH);
aicos_dcache_clean_range((void *)(uintptr_t)&qhead->hw, sizeof(struct ehci_qh_s));
}
static int usb_ehci_ioc_setup(struct usb_ehci_epinfo_s *epinfo)
{
int ret = -ENODEV;
/* Is the device still connected? */
if (epinfo->hport->connected) {
/* We want to be awakened by IOC interrupt */
epinfo->status = 0; /* No status yet */
epinfo->xfrd = 0; /* Nothing transferred yet */
epinfo->result = -EBUSY; /* Transfer in progress */
ret = 0; /* We are good to go */
}
return ret;
}
static int usb_ehci_qtd_ioccheck(struct usb_ehci_qtd_s *qtd, u32 **bp,
void *arg)
{
struct usb_ehci_epinfo_s *epinfo = (struct usb_ehci_epinfo_s *)arg;
aicos_dcache_invalid_range((void *)(uintptr_t)&qtd->hw,
sizeof(struct usb_ehci_qtd_s));
/* Remove the qTD from the list
*
* NOTE that we don't check if the qTD is active nor do we check if there
* are any errors reported in the qTD. If the transfer halted due to
* an error, then qTDs in the list after the error qTD will still appear
* to be active.
*/
**bp = qtd->hw.nqp;
/* Subtract the number of bytes left untransferred. The epinfo->xfrd
* field is initialized to the total number of bytes to be transferred
* (all qTDs in the list). We subtract out the number of untransferred
* bytes on each transfer and the final result will be the number of bytes
* actually transferred.
*/
epinfo->xfrd -= ((qtd->hw.token) & QTD_TOKEN_NBYTES_MASK) >> QTD_TOKEN_NBYTES_SHIFT;
/* Release this QH by returning it to the free list */
usb_ehci_qtd_free(qtd);
return 0;
}
static int usb_ehci_qh_ioccheck(struct usb_ehci_qh_s *qh, u32 **bp, void *arg)
{
struct usb_ehci_epinfo_s *epinfo;
u32 token;
int ret;
aicos_dcache_invalid_range((void *)(uintptr_t)&qh->hw, sizeof(struct ehci_qh_s));
/* Get the endpoint info pointer from the extended QH data. Only the
* g_asynchead QH can have a NULL epinfo field.
*/
epinfo = qh->epinfo;
/* Paragraph 3.6.3: "The nine DWords in [the Transfer Overlay] area
* represent a transaction working space for the host controller. The
* general operational model is that the host controller can detect
* whether the overlay area contains a description of an active transfer.
* If it does not contain an active transfer, then it follows the Queue
* Head Horizontal Link Pointer to the next queue head. The host
* controller will never follow the Next Transfer Queue Element or
* Alternate Queue Element pointers unless it is actively attempting to
* advance the queue ..."
*/
/* Is the qTD still active? */
token = (qh->hw.overlay.token);
if ((token & QH_TOKEN_ACTIVE) != 0) {
/* Yes... we cannot process the QH while it is still active. Return
* zero to visit the next QH in the list.
*/
*bp = &qh->hw.hlp;
return 0;
}
/* Remove all active, attached qTD structures from the inactive QH */
ret = usb_ehci_qtd_foreach(qh, usb_ehci_qtd_ioccheck, (void *)qh->epinfo);
if (ret < 0) {
}
/* If there is no longer anything attached to the QH, then remove it from
* the asynchronous queue.
*/
if ((qh->fqp & QTD_NQP_T) == 0) {
/* the horizontal link pointer of this QH will become the
* next back pointer.
*/
*bp = &qh->hw.hlp;
aicos_dcache_clean_range((void *)(uintptr_t)bp, sizeof(uint32_t));
return 0;
}
/* Not terminal case: */
/* Set the forward link of the previous QH to point to the next
* QH in the list.
*/
**bp = qh->hw.hlp;
/* Check for errors, update the data toggle */
if ((token & QH_TOKEN_ERRORS) == 0) {
/* No errors.. Save the last data toggle value */
epinfo->toggle = (token >> QTD_TOKEN_TOGGLE_SHIFT) & 1;
/* Report success */
epinfo->status = 0;
epinfo->result = 0;
} else {
/* An error occurred */
epinfo->status = (token & QH_TOKEN_STATUS_MASK) >> QH_TOKEN_STATUS_SHIFT;
/* The HALT condition is set on a variety of conditions: babble,
* error counter countdown to zero, or a STALL. If we can rule
* out babble (babble bit not set) and if the error counter is
* non-zero, then we can assume a STALL. In this case, we return
* -PERM to inform the class driver of the stall condition.
*/
if ((token & (QH_TOKEN_BABBLE | QH_TOKEN_HALTED)) == QH_TOKEN_HALTED &&
(token & QH_TOKEN_CERR_MASK) != 0) {
/* It is a stall, Note that the data toggle is reset
* after the stall.
*/
epinfo->result = -EPERM;
epinfo->toggle = 0;
} else {
/* Otherwise, it is some kind of data transfer error */
epinfo->result = -EIO;
}
}
/* Then release this QH by returning it to the free list */
usb_ehci_qh_free(qh);
return 0;
}
static int usb_ehci_transfer_wait(int id, struct usb_ehci_epinfo_s *epinfo,
u32 timeout)
{
int ret = 0;
u32 start, cur;
u32 usbsts, pending, regval;
struct usb_ehci_qh_s *qh = NULL;
volatile struct ehci_hcor_s *hcor;
u32 *bp;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
start = aic_get_time_us();
do {
/* Read Interrupt Status and mask out interrupts that are not enabled. */
usbsts = readl(&hcor->usbsts);
regval = readl(&hcor->usbintr);
/* Handle all unmasked interrupt sources */
pending = usbsts & regval;
/* Clear all pending interrupts */
writel(usbsts & EHCI_INT_ALLINTS, &hcor->usbsts);
cur = aic_get_time_us();
if ((pending & (EHCI_INT_USBINT | EHCI_INT_USBERRINT)) == 0)
continue;
bp = (u32 *)&g_asynchead.hw.hlp;
qh = (struct usb_ehci_qh_s *)(uintptr_t)((*bp) & QH_HLP_MASK);
/* If the asynchronous queue is empty, then the forward point in the
* asynchronous queue head will point back to the queue head.
*/
if (qh && qh != &g_asynchead) {
/* Then traverse and operate on every QH and qTD in the asynchronous
* queue
*/
usb_ehci_qh_foreach(qh, &bp, usb_ehci_qh_ioccheck, NULL);
}
if (epinfo->result >= 0) {
break;
}
} while (cur - start < timeout);
ret = epinfo->result;
if (ret < 0) {
return ret;
}
/* Transfer completed successfully. Return the number of bytes transferred.*/
return epinfo->xfrd;
}
#define USBHOST_CONTROL_TRANSFER_TIMEOUT 2000000
static void ehci_disable_async(int id)
{
u32 regval;
volatile struct ehci_hcor_s *hcor;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
regval = readl(&hcor->usbcmd);
regval &= ~(EHCI_USBCMD_ASEN);
writel(regval, &hcor->usbcmd);
usb_ehci_wait_usbsts(id, EHCI_USBSTS_ASS, 0, USBHOST_CONTROL_TRANSFER_TIMEOUT);
}
static void ehci_enable_async(int id)
{
u32 regval;
volatile struct ehci_hcor_s *hcor;
hcor = (struct ehci_hcor_s *)USB_EHCI_HCOR_BASE(id);
regval = (u32)(uintptr_t)&g_asynchead;
/* Set the Current Asynchronous List Address. */
writel(regval, &hcor->asynclistaddr);
regval = readl(&hcor->usbcmd);
regval |= (EHCI_USBCMD_ASEN);
writel(regval, &hcor->usbcmd);
usb_ehci_wait_usbsts(id, EHCI_USBSTS_ASS, EHCI_USBSTS_ASS, USBHOST_CONTROL_TRANSFER_TIMEOUT);
}
static int usb_ehci_control_init(struct usb_ehci_epinfo_s *epinfo,
struct usb_setup_packet *setup, u8 *buffer,
u32 buflen)
{
struct usb_ehci_qh_s *qh;
struct usb_ehci_qtd_s *qtd;
u32 tokenbits, physaddr, *flink, *alt, toggle;
bool dirin = false;
/* Create and initialize a Queue Head (QH) structure for this transfer */
qh = usb_ehci_qh_create(epinfo);
if (qh == NULL) {
pr_err("Failed to create QH.\n");
return -ENOMEM;
}
epinfo->qh = qh;
/* Initialize the QH link and get the next data toggle (not used for SETUP
* transfers)
*/
flink = &qh->hw.overlay.nqp;
toggle = (u32)epinfo->toggle << QTD_TOKEN_TOGGLE_SHIFT;
/* Is there an EP0 SETUP request? If so, we will queue two or three qTDs:
*
* 1) One for the SETUP phase,
* 2) One for the DATA phase (if there is data), and
* 3) One for the STATUS phase.
*/
/* Allocate a new Queue Element Transfer Descriptor (qTD) for the SETUP
* phase of the request sequence.
*/
{
qtd = usb_ehci_qtd_setupphase(epinfo, setup);
if (qtd == NULL) {
pr_err("%s, line %d: NOMEM.\n", __func__, __LINE__);
return -ENOMEM;
}
/* Link the new qTD to the QH head. */
physaddr = ((u32)(uintptr_t)qtd);
*flink = (physaddr);
/* Get the new forward link pointer and data toggle */
flink = &qtd->hw.nqp;
toggle = QTD_TOKEN_TOGGLE;
}
/* A buffer may or may be supplied with an EP0 SETUP transfer. A buffer
* will always be present for normal endpoint data transfers.
*/
alt = NULL;
if (buffer != NULL && buflen > 0) {
/* Extra TOKEN bits include the data toggle, the data PID, and if
* there is no request, an indication to interrupt at the end of this
* transfer.
*/
tokenbits = toggle;
/* Get the data token direction.
*
* If this is a SETUP request, use the direction contained in the
* request. The IOC bit is not set.
*/
if ((setup->bmRequestType & 0x80) == 0x80) {
tokenbits |= QTD_TOKEN_PID_IN;
dirin = true;
} else {
tokenbits |= QTD_TOKEN_PID_OUT;
dirin = false;
}
/* Allocate a new Queue Element Transfer Descriptor (qTD) for the data
* buffer.
*/
qtd = usb_ehci_qtd_dataphase(epinfo, buffer, buflen, tokenbits);
if (qtd == NULL) {
pr_err("%s, line %d: NOMEM.\n", __func__, __LINE__);
return -ENOMEM;
}
/* Link the new qTD to either QH head of the SETUP qTD. */
physaddr = ((u32)(uintptr_t)qtd);
*flink = (physaddr);
/* Set the forward link pointer to this new qTD */
flink = &qtd->hw.nqp;
/* If this was an IN transfer, then setup a pointer alternate link.
* The EHCI hardware will use this link if a short packet is received.
*/
if (dirin) {
alt = &qtd->hw.alt;
}
}
{
/* Extra TOKEN bits include the data toggle and the correct data PID. */
tokenbits = toggle;
/* The status phase direction is the opposite of the data phase. If
* this is an IN request, then we received the buffer and we will send
* the zero length packet handshake.
*/
if ((setup->bmRequestType & 0x80) == 0x80) {
tokenbits |= QTD_TOKEN_PID_OUT;
} else {
/* Otherwise, this in an OUT request. We send the buffer and we expect
* to receive the NULL packet handshake.
*/
tokenbits |= QTD_TOKEN_PID_IN;
}
/* Allocate a new Queue Element Transfer Descriptor (qTD) for the
* status
*/
qtd = usb_ehci_qtd_statusphase(tokenbits);
if (qtd == NULL) {
pr_err("%s, line %d: NOMEM.\n", __func__, __LINE__);
return -ENOMEM;
}
/* Link the new qTD to either the SETUP or data qTD. */
physaddr = ((u32)(uintptr_t)qtd);
*flink = (physaddr);
/* In an IN data qTD was also enqueued, then linked the data qTD's
* alternate pointer to this STATUS phase qTD in order to handle short
* transfers.
*/
if (alt) {
*alt = (physaddr);
}
}
/* Add the new QH to the head of the asynchronous queue list */
usb_ehci_qh_enqueue(&g_asynchead, qh);
return 0;
}
int usbh_control_transfer(usbh_epinfo_t ep, struct usb_setup_packet *setup,
u8 *buffer, int id)
{
struct usb_ehci_epinfo_s *epinfo = (struct usb_ehci_epinfo_s *)ep;
int ret;
/* Set the request for the IOC event well BEFORE initiating the transfer. */
ret = usb_ehci_ioc_setup(epinfo);
if (ret != 0) {
pr_err("%s, line %d: setup failed.\n", __func__, __LINE__);
goto errout_with_setup;
}
ehci_disable_async(id);
ret = usb_ehci_control_init(epinfo, setup, buffer, setup->wLength);
if (ret < 0) {
pr_err("%s, line %d: init failed.\n", __func__, __LINE__);
goto errout_with_iocwait;
}
ehci_enable_async(id);
/* And wait for the transfer to complete */
ret = usb_ehci_transfer_wait(id, epinfo, USBHOST_CONTROL_TRANSFER_TIMEOUT);
if (ret < 0) {
pr_err("%s, line %d: wait tmo.\n", __func__, __LINE__);
goto errout_with_iocwait;
}
return ret;
errout_with_iocwait:
/* Clean-up after an error */
if (epinfo->qh) {
usb_ehci_qh_discard(epinfo->qh);
epinfo->qh = NULL;
}
errout_with_setup:
return ret;
}
int usb_ehci_bulk_init(struct usb_ehci_epinfo_s *epinfo, u8 *buffer, u32 buflen)
{
struct usb_ehci_qh_s *qh;
struct usb_ehci_qtd_s *qtd;
u32 tokenbits;
u32 physaddr;
/* Create and initialize a Queue Head (QH) structure for this transfer */
qh = usb_ehci_qh_create(epinfo);
if (qh == NULL) {
pr_err("%s, line %d: NOMEM.\n", __func__, __LINE__);
return -ENOMEM;
}
epinfo->qh = qh;
/* Initialize the QH link and get the next data toggle */
tokenbits = (u32)epinfo->toggle << QTD_TOKEN_TOGGLE_SHIFT;
if (buffer != NULL && buflen > 0) {
/* Get the direction from the epinfo structure. Since this is not an EP0 SETUP request,
* nothing follows the data and we want the IOC interrupt when the data transfer completes.
*/
if (epinfo->dirin) {
tokenbits |= (QTD_TOKEN_PID_IN | QTD_TOKEN_IOC);
} else {
tokenbits |= (QTD_TOKEN_PID_OUT | QTD_TOKEN_IOC);
}
/* Allocate a new Queue Element Transfer Descriptor (qTD) for the data
* buffer.
*/
qtd = usb_ehci_qtd_dataphase(epinfo, buffer, buflen, tokenbits);
if (qtd == NULL) {
pr_err("%s, line %d: NOMEM.\n", __func__, __LINE__);
return -ENOMEM;
}
/* Link the new qTD to the QH. */
physaddr = (u32)(uintptr_t)qtd;
qh->hw.overlay.nqp = (physaddr);
}
/* Add the new QH to the head of the asynchronous queue list */
usb_ehci_qh_enqueue(&g_asynchead, qh);
return 0;
}
int usbh_ep_bulk_transfer(usbh_epinfo_t ep, u8 *buffer, u32 buflen, u32 timeout,
int id)
{
int ret;
struct usb_ehci_epinfo_s *epinfo = (struct usb_ehci_epinfo_s *)ep;
ret = usb_ehci_ioc_setup(epinfo);
if (ret < 0) {
goto errout_with_setup;
}
ehci_disable_async(id);
ret = usb_ehci_bulk_init(epinfo, buffer, buflen);
if (ret < 0) {
goto errout_with_iocwait;
}
ehci_enable_async(id);
/* And wait for the transfer to complete */
ret = usb_ehci_transfer_wait(id, epinfo, timeout);
if (ret < 0) {
goto errout_with_iocwait;
}
return ret;
errout_with_iocwait:
/* Clean-up after an error */
if (epinfo->qh) {
usb_ehci_qh_discard(epinfo->qh);
epinfo->qh = NULL;
}
errout_with_setup:
return ret;
}