Files
luban-lite-t3e-pro/bsp/examples/test-adc/test_adc.c
刘可亮 3b4064f334 v1.0.2
2023-11-30 19:48:02 +08:00

290 lines
7.1 KiB
C

/*
* Copyright (c) 2022-2023, ArtInChip Technology Co., Ltd
*
* SPDX-License-Identifier: Apache-2.0
*
* Authors: Siyao.Li <siyao.li@artinchip.com>
*/
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <sys/time.h>
#include <rtthread.h>
#include <time.h>
#include "rtdevice.h"
#include "aic_core.h"
#include "aic_log.h"
#include "hal_adcim.h"
#include "hal_gpai.h"
#include "aic_core.h"
/* Global macro and variables */
#define AIC_ADCIM_NAME "adcim"
#define AIC_GPAI_NAME "gpai"
#ifdef AIC_ADCIM_DM_DRV
#define ADC_CHAN_GPAI11 11
#define ADC_CHAN_TSEN3 15
#endif
#define GPAI_AVG_SAMPLES_NUM 8
#define ADC_CHAN_NUM 16
#define ADC_DM_SRAM_SIZE 512
#define ADC_TEST_DATA_COUNT 64
static rt_adc_device_t gpai_dev;
static const char sopts[] = "c:mhv";
static const struct option lopts[] = {
{"channel", required_argument, NULL, 'c'},
{"mode", no_argument, NULL, 'm'},
{"usage", no_argument, NULL, 'h'},
{"verbose", no_argument, NULL, 'v'},
{0, 0, 0, 0}
};
static int g_verbose = 0;
static int g_dma_mode = 0;
static struct aic_dma_transfer_info dma_info;
static int g_cur_data[ADC_DM_SRAM_SIZE] = {0};
static int g_sram_data[ADC_DM_SRAM_SIZE] = {0};
static int g_expect_data[ADC_TEST_DATA_COUNT] = {0};
static rt_uint32_t g_adc_buf[ADC_TEST_DATA_COUNT] __attribute__((aligned(64)));
typedef void (*dma_callback)(void *dma_param);
static void cmd_adcim_usage(char *program)
{
printf("Compile time: %s %s\n", __DATE__, __TIME__);
printf("Usage: %s [options]\n", program);
printf("\t -c, --channel\t\tSelect one channel in [0, 15]\n");
printf("\t -m, --dma_mode\t\tSelect the dma mode\n");
printf("\t -h, --usage \n");
printf("\n");
printf("Example: %s -c 0\n", program);
}
int abs(int val)
{
if (val < 0)
return -val;
else
return val;
}
static void gen_adc_data(u32 *size)
{
int i;
int *pdata = g_sram_data;
if (g_verbose)
pr_info("Generate %d data ...\n", ADC_DM_SRAM_SIZE);
for (i = 0; i < ADC_DM_SRAM_SIZE; i++)
*pdata++ = 1800 + abs(i % 256 - 128) - 64;
*size = ADC_DM_SRAM_SIZE;
if (g_verbose)
pr_info("The ADC data, size %d:\n", *size);
}
int average(int *data, u32 size, int trim)
{
int sum = 0, i, min = *data, max = 0;
if (!data || size < 3)
return 0;
for (i = 0; i < size; i++) {
if (data[i] < min)
min = data[i];
if (data[i] > max)
max = data[i];
sum += data[i];
}
if (trim)
return (sum - min - max) / (size - 2);
else
return sum/size;
}
static void gpai_check_adc_by_cpu(void)
{
int i;
for(i = 0;i < ADC_TEST_DATA_COUNT;i++) {
if (g_cur_data[i] != g_expect_data[i])
printf("[%d] Failed%d/%d\n", i, g_cur_data[i], g_expect_data[i]);
else
printf("[%d] OK! %d/%d\n",i, g_cur_data[i], g_expect_data[i]);
}
}
static int gpai_get_adc_by_cpu(int chan)
{
int ret;
int i;
int current_irq_count;
int count = 0;
int cur_data_count = 1;
int cur;
gpai_dev = (rt_adc_device_t)rt_device_find(AIC_GPAI_NAME);
if (!gpai_dev) {
rt_kprintf("Failed to open %s device\n", AIC_GPAI_NAME);
return -RT_ERROR;
}
ret = rt_adc_enable(gpai_dev, chan);
if (ret) {
rt_kprintf("Failed to enable %s device\n", AIC_GPAI_NAME);
return -RT_ERROR;
}
while (count < ADC_TEST_DATA_COUNT) {
current_irq_count = rt_adc_control(gpai_dev, RT_ADC_CMD_IRQ_COUNT,
(void *)chan);
if (current_irq_count < 0) {
rt_kprintf("Failed to get irq count\n");
return -RT_ERROR;
}
cur = rt_adc_read(gpai_dev, chan);
if (current_irq_count == cur_data_count) {
g_cur_data[count] = cur;
count++;
cur_data_count++;
}
}
for (i = 0; i < ADC_DM_SRAM_SIZE / GPAI_AVG_SAMPLES_NUM; i++) {
g_expect_data[i] = average(&g_sram_data[i * GPAI_AVG_SAMPLES_NUM],
GPAI_AVG_SAMPLES_NUM, 0);
}
gpai_check_adc_by_cpu();
rt_adc_disable(gpai_dev, chan);
return 0;
}
static void gpai_dma_callback(void *arg)
{
rt_kprintf("dma callback happened\n");
}
static void gpai_check_adc_by_dma(void)
{
int i;
int *dma_data = (int *)dma_info.buf;
for(i = 0; i < ADC_TEST_DATA_COUNT; i++) {
if (dma_data[i] != g_expect_data[i])
printf("[%d] Failed%d/%d\n", i, dma_data[i], g_expect_data[i]);
else
printf("[%d] OK! %d/%d\n",i, dma_data[i], g_expect_data[i]);
}
}
static int gpai_get_adc_by_dma(int chan)
{
int ret;
int i;
gpai_dev = (rt_adc_device_t)rt_device_find(AIC_GPAI_NAME);
if (!gpai_dev) {
rt_kprintf("Failed to open %s device\n", AIC_GPAI_NAME);
return -RT_ERROR;
}
ret = rt_adc_enable(gpai_dev, chan);
if (ret) {
rt_kprintf("Failed to enable %s device\n", AIC_GPAI_NAME);
return -RT_ERROR;
}
dma_info.chan_id = chan;
dma_info.buf = g_adc_buf;
dma_info.buf_size = sizeof(g_adc_buf);
dma_info.callback = gpai_dma_callback;
ret = rt_adc_control(gpai_dev, RT_ADC_CMD_CONFIG_DMA, &dma_info);
if (ret) {
rt_kprintf("Failed to config dma\n");
return -RT_ERROR;
}
ret = rt_adc_control(gpai_dev, RT_ADC_CMD_GET_DMA_DATA, (void *)chan);
if (ret) {
rt_kprintf("Failed to get dma data\n");
return -RT_ERROR;
}
for (i = 0; i < ADC_DM_SRAM_SIZE / GPAI_AVG_SAMPLES_NUM; i++) {
g_expect_data[i] = average(&g_sram_data[i * GPAI_AVG_SAMPLES_NUM],
GPAI_AVG_SAMPLES_NUM, 0);
}
g_dma_mode = 0;
aicos_msleep(100);
gpai_check_adc_by_dma();
rt_adc_disable(gpai_dev, chan);
return 0;
}
static void adc_dm_test(u32 chan)
{
u32 size = 0;
if (chan <= ADC_CHAN_GPAI11) {
gen_adc_data(&size);
hal_dm_chan_store(chan);
hal_adcdm_sram_write(g_sram_data, 0, ADC_DM_SRAM_SIZE);
if (g_dma_mode) {
rt_kprintf("Starting dma mode\n");
gpai_get_adc_by_dma(chan);
} else {
rt_kprintf("Starting cpu interrupt mode\n");
gpai_get_adc_by_cpu(chan);
}
}
}
static void cmd_test_adc(int argc, char **argv)
{
int c;
u32 ch = 0;
if (argc < 2) {
cmd_adcim_usage(argv[0]);
return;
}
optind = 0;
while ((c = getopt_long(argc, argv, sopts, lopts, NULL)) != -1) {
switch (c) {
case 'c':
ch = atoi(optarg);
if ((ch < 0) || (ch >= AIC_GPAI_CH_NUM))
pr_err("Invalid channel No.%s\n", optarg);
adc_dm_test(ch);
continue;
case 'm':
g_dma_mode = 1;
continue;
case 'v':
g_verbose = 1;
continue;
case 'h':
default:
cmd_adcim_usage(argv[0]);
return;
}
}
return;
}
MSH_CMD_EXPORT_ALIAS(cmd_test_adc, test_adc, adcim dm device sample);