mirror of
https://gitee.com/Vancouver2017/luban-lite-t3e-pro.git
synced 2025-12-14 18:38:55 +00:00
1026 lines
23 KiB
C
1026 lines
23 KiB
C
/*
|
|
|
|
Translated to C by Bonnie Toy 5/88
|
|
- modified on 2/25/94 to fix a problem with daxpy for
|
|
unequal increments or equal increments not equal to 1.
|
|
Jack Dongarra
|
|
- modified on 08/27/09 fix typo line 270, plus set 'ix' to 0
|
|
in the case incx is not 1
|
|
Julie Langou
|
|
|
|
To compile single precision version for Sun-4:
|
|
|
|
cc -DSP -O4 -fsingle -fsingle2 clinpack.c -lm
|
|
|
|
To compile double precision version for Sun-4:
|
|
|
|
cc -DDP -O4 clinpack.c -lm
|
|
|
|
To obtain rolled source BLAS, add -DROLL to the command lines.
|
|
To obtain unrolled source BLAS, add -DUNROLL to the command lines.
|
|
|
|
You must specify one of -DSP or -DDP to compile correctly.
|
|
|
|
You must specify one of -DROLL or -DUNROLL to compile correctly.
|
|
|
|
*/
|
|
|
|
//#define SP
|
|
#define DP
|
|
#define __NO_OS__
|
|
#define UNROLL
|
|
|
|
#ifdef SP
|
|
#define REAL float
|
|
#define ZERO 0.0
|
|
#define ONE 1.0
|
|
#define PREC "Single "
|
|
#endif
|
|
|
|
#ifdef DP
|
|
#define REAL double
|
|
#define ZERO 0.0e0
|
|
#define ONE 1.0e0
|
|
#define PREC "Double "
|
|
#endif
|
|
|
|
#define NTIMES 10
|
|
|
|
#ifdef ROLL
|
|
#define ROLLING "Rolled "
|
|
#endif
|
|
#ifdef UNROLL
|
|
#define ROLLING "Unrolled "
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <math.h>
|
|
#include <rtthread.h>
|
|
|
|
static REAL timer[9][9];
|
|
|
|
/*----------------------*/
|
|
int print_time (row)
|
|
int row;
|
|
{
|
|
#ifndef AIC_PRINT_FLOAT_CUSTOM
|
|
fprintf(stderr,"%11.2f%11.2f%11.2f%11.0f%11.2f%11.2f\n", (double)timer[0][row],
|
|
(double)timer[1][row], (double)timer[2][row], (double)timer[3][row],
|
|
(double)timer[4][row], (double)timer[5][row]);
|
|
#else
|
|
/* print float */
|
|
double p_f[6] = {0};
|
|
unsigned int p_i1[6] = {0};
|
|
unsigned int p_i2[6] = {0};
|
|
int i = 0;
|
|
|
|
for (i=0; i<6; i++){
|
|
p_f[i] = (double)timer[i][row];
|
|
p_i1[i] = (unsigned int)p_f[i];
|
|
p_i2[i] = (unsigned int)((p_f[i]-p_i1[i])*100.0);
|
|
}
|
|
|
|
fprintf(stderr,"%11d.%-2d%11d.%-2d%11d.%-2d%11d.%-2d%11d.%-2d%11d.%-2d\n", p_i1[0], p_i2[0],
|
|
p_i1[1], p_i2[1], p_i1[2], p_i2[2], p_i1[3], p_i2[3],
|
|
p_i1[4], p_i2[4], p_i1[5], p_i2[5]);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------*/
|
|
int matgen(a,lda,n,b,norma)
|
|
REAL a[],b[],*norma;
|
|
int lda, n;
|
|
|
|
/* We would like to declare a[][lda], but c does not allow it. In this
|
|
function, references to a[i][j] are written a[lda*j+i]. */
|
|
|
|
{
|
|
int init, i, j;
|
|
|
|
init = 1325;
|
|
*norma = 0.0;
|
|
for (j = 0; j < n; j++) {
|
|
for (i = 0; i < n; i++) {
|
|
init = 3125*init % 65536;
|
|
a[lda*j+i] = (init - 32768.0)/16384.0;
|
|
*norma = (a[lda*j+i] > *norma) ? a[lda*j+i] : *norma;
|
|
}
|
|
}
|
|
for (i = 0; i < n; i++) {
|
|
b[i] = 0.0;
|
|
}
|
|
for (j = 0; j < n; j++) {
|
|
for (i = 0; i < n; i++) {
|
|
b[i] = b[i] + a[lda*j+i];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------*/
|
|
void dscal(n,da,dx,incx)
|
|
|
|
/* scales a vector by a constant.
|
|
jack dongarra, linpack, 3/11/78.
|
|
*/
|
|
REAL da,dx[];
|
|
int n, incx;
|
|
{
|
|
int i,m,nincx;
|
|
|
|
if(n <= 0)return;
|
|
if(incx != 1) {
|
|
|
|
/* code for increment not equal to 1 */
|
|
|
|
nincx = n*incx;
|
|
for (i = 0; i < nincx; i = i + incx)
|
|
dx[i] = da*dx[i];
|
|
return;
|
|
}
|
|
|
|
/* code for increment equal to 1 */
|
|
|
|
#ifdef ROLL
|
|
for (i = 0; i < n; i++)
|
|
dx[i] = da*dx[i];
|
|
#endif
|
|
#ifdef UNROLL
|
|
|
|
m = n % 5;
|
|
if (m != 0) {
|
|
for (i = 0; i < m; i++)
|
|
dx[i] = da*dx[i];
|
|
if (n < 5) return;
|
|
}
|
|
for (i = m; i < n; i = i + 5){
|
|
dx[i] = da*dx[i];
|
|
dx[i+1] = da*dx[i+1];
|
|
dx[i+2] = da*dx[i+2];
|
|
dx[i+3] = da*dx[i+3];
|
|
dx[i+4] = da*dx[i+4];
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
/*----------------------*/
|
|
|
|
void daxpy(n,da,dx,incx,dy,incy)
|
|
/*
|
|
constant times a vector plus a vector.
|
|
jack dongarra, linpack, 3/11/78.
|
|
*/
|
|
REAL dx[],dy[],da;
|
|
int incx,incy,n;
|
|
{
|
|
int i,ix,iy,m;
|
|
|
|
if(n <= 0) return;
|
|
if (da == ZERO) return;
|
|
|
|
if(incx != 1 || incy != 1) {
|
|
|
|
/* code for unequal increments or equal increments
|
|
not equal to 1 */
|
|
|
|
ix = 0;
|
|
iy = 0;
|
|
if(incx < 0) ix = (-n+1)*incx;
|
|
if(incy < 0)iy = (-n+1)*incy;
|
|
for (i = 0;i < n; i++) {
|
|
dy[iy] = dy[iy] + da*dx[ix];
|
|
ix = ix + incx;
|
|
iy = iy + incy;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* code for both increments equal to 1 */
|
|
|
|
#ifdef ROLL
|
|
for (i = 0;i < n; i++) {
|
|
dy[i] = dy[i] + da*dx[i];
|
|
}
|
|
#endif
|
|
#ifdef UNROLL
|
|
|
|
m = n % 4;
|
|
if ( m != 0) {
|
|
for (i = 0; i < m; i++)
|
|
dy[i] = dy[i] + da*dx[i];
|
|
if (n < 4) return;
|
|
}
|
|
for (i = m; i < n; i = i + 4) {
|
|
dy[i] = dy[i] + da*dx[i];
|
|
dy[i+1] = dy[i+1] + da*dx[i+1];
|
|
dy[i+2] = dy[i+2] + da*dx[i+2];
|
|
dy[i+3] = dy[i+3] + da*dx[i+3];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*----------------------*/
|
|
void dgefa(a,lda,n,ipvt,info)
|
|
REAL a[];
|
|
int lda,n,ipvt[],*info;
|
|
|
|
/* We would like to declare a[][lda], but c does not allow it. In this
|
|
function, references to a[i][j] are written a[lda*i+j]. */
|
|
/*
|
|
dgefa factors a double precision matrix by gaussian elimination.
|
|
|
|
dgefa is usually called by dgeco, but it can be called
|
|
directly with a saving in time if rcond is not needed.
|
|
(time for dgeco) = (1 + 9/n)*(time for dgefa) .
|
|
|
|
on entry
|
|
|
|
a REAL precision[n][lda]
|
|
the matrix to be factored.
|
|
|
|
lda integer
|
|
the leading dimension of the array a .
|
|
|
|
n integer
|
|
the order of the matrix a .
|
|
|
|
on return
|
|
|
|
a an upper triangular matrix and the multipliers
|
|
which were used to obtain it.
|
|
the factorization can be written a = l*u where
|
|
l is a product of permutation and unit lower
|
|
triangular matrices and u is upper triangular.
|
|
|
|
ipvt integer[n]
|
|
an integer vector of pivot indices.
|
|
|
|
info integer
|
|
= 0 normal value.
|
|
= k if u[k][k] .eq. 0.0 . this is not an error
|
|
condition for this subroutine, but it does
|
|
indicate that dgesl or dgedi will divide by zero
|
|
if called. use rcond in dgeco for a reliable
|
|
indication of singularity.
|
|
|
|
linpack. this version dated 08/14/78 .
|
|
cleve moler, university of new mexico, argonne national lab.
|
|
|
|
functions
|
|
|
|
blas daxpy,dscal,idamax
|
|
*/
|
|
|
|
{
|
|
/* internal variables */
|
|
|
|
REAL t;
|
|
int idamax(),j,k,kp1,l,nm1;
|
|
|
|
|
|
/* gaussian elimination with partial pivoting */
|
|
|
|
*info = 0;
|
|
nm1 = n - 1;
|
|
if (nm1 >= 0) {
|
|
for (k = 0; k < nm1; k++) {
|
|
kp1 = k + 1;
|
|
|
|
/* find l = pivot index */
|
|
|
|
l = idamax(n-k,&a[lda*k+k],1) + k;
|
|
ipvt[k] = l;
|
|
|
|
/* zero pivot implies this column already
|
|
triangularized */
|
|
|
|
if (a[lda*k+l] != ZERO) {
|
|
|
|
/* interchange if necessary */
|
|
|
|
if (l != k) {
|
|
t = a[lda*k+l];
|
|
a[lda*k+l] = a[lda*k+k];
|
|
a[lda*k+k] = t;
|
|
}
|
|
|
|
/* compute multipliers */
|
|
|
|
t = -ONE/a[lda*k+k];
|
|
dscal(n-(k+1),t,&a[lda*k+k+1],1);
|
|
|
|
/* row elimination with column indexing */
|
|
|
|
for (j = kp1; j < n; j++) {
|
|
t = a[lda*j+l];
|
|
if (l != k) {
|
|
a[lda*j+l] = a[lda*j+k];
|
|
a[lda*j+k] = t;
|
|
}
|
|
daxpy(n-(k+1),t,&a[lda*k+k+1],1,
|
|
&a[lda*j+k+1],1);
|
|
}
|
|
}
|
|
else {
|
|
*info = k;
|
|
}
|
|
}
|
|
}
|
|
ipvt[n-1] = n-1;
|
|
if (a[lda*(n-1)+(n-1)] == ZERO) *info = n-1;
|
|
}
|
|
|
|
/*----------------------*/
|
|
|
|
void dgesl(a,lda,n,ipvt,b,job)
|
|
int lda,n,ipvt[],job;
|
|
REAL a[],b[];
|
|
|
|
/* We would like to declare a[][lda], but c does not allow it. In this
|
|
function, references to a[i][j] are written a[lda*i+j]. */
|
|
|
|
/*
|
|
dgesl solves the double precision system
|
|
a * x = b or trans(a) * x = b
|
|
using the factors computed by dgeco or dgefa.
|
|
|
|
on entry
|
|
|
|
a double precision[n][lda]
|
|
the output from dgeco or dgefa.
|
|
|
|
lda integer
|
|
the leading dimension of the array a .
|
|
|
|
n integer
|
|
the order of the matrix a .
|
|
|
|
ipvt integer[n]
|
|
the pivot vector from dgeco or dgefa.
|
|
|
|
b double precision[n]
|
|
the right hand side vector.
|
|
|
|
job integer
|
|
= 0 to solve a*x = b ,
|
|
= nonzero to solve trans(a)*x = b where
|
|
trans(a) is the transpose.
|
|
|
|
on return
|
|
|
|
b the solution vector x .
|
|
|
|
error condition
|
|
|
|
a division by zero will occur if the input factor contains a
|
|
zero on the diagonal. technically this indicates singularity
|
|
but it is often caused by improper arguments or improper
|
|
setting of lda . it will not occur if the subroutines are
|
|
called correctly and if dgeco has set rcond .gt. 0.0
|
|
or dgefa has set info .eq. 0 .
|
|
|
|
to compute inverse(a) * c where c is a matrix
|
|
with p columns
|
|
dgeco(a,lda,n,ipvt,rcond,z)
|
|
if (!rcond is too small){
|
|
for (j=0,j<p,j++)
|
|
dgesl(a,lda,n,ipvt,c[j][0],0);
|
|
}
|
|
|
|
linpack. this version dated 08/14/78 .
|
|
cleve moler, university of new mexico, argonne national lab.
|
|
|
|
functions
|
|
|
|
blas daxpy,ddot
|
|
*/
|
|
{
|
|
/* internal variables */
|
|
|
|
REAL ddot(),t;
|
|
int k,kb,l,nm1;
|
|
|
|
nm1 = n - 1;
|
|
if (job == 0) {
|
|
|
|
/* job = 0 , solve a * x = b
|
|
first solve l*y = b */
|
|
|
|
if (nm1 >= 1) {
|
|
for (k = 0; k < nm1; k++) {
|
|
l = ipvt[k];
|
|
t = b[l];
|
|
if (l != k){
|
|
b[l] = b[k];
|
|
b[k] = t;
|
|
}
|
|
daxpy(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1);
|
|
}
|
|
}
|
|
|
|
/* now solve u*x = y */
|
|
|
|
for (kb = 0; kb < n; kb++) {
|
|
k = n - (kb + 1);
|
|
b[k] = b[k]/a[lda*k+k];
|
|
t = -b[k];
|
|
daxpy(k,t,&a[lda*k+0],1,&b[0],1);
|
|
}
|
|
}
|
|
else {
|
|
|
|
/* job = nonzero, solve trans(a) * x = b
|
|
first solve trans(u)*y = b */
|
|
|
|
for (k = 0; k < n; k++) {
|
|
t = ddot(k,&a[lda*k+0],1,&b[0],1);
|
|
b[k] = (b[k] - t)/a[lda*k+k];
|
|
}
|
|
|
|
/* now solve trans(l)*x = y */
|
|
|
|
if (nm1 >= 1) {
|
|
for (kb = 1; kb < nm1; kb++) {
|
|
k = n - (kb+1);
|
|
b[k] = b[k] + ddot(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1);
|
|
l = ipvt[k];
|
|
if (l != k) {
|
|
t = b[l];
|
|
b[l] = b[k];
|
|
b[k] = t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*----------------------*/
|
|
|
|
REAL ddot(n,dx,incx,dy,incy)
|
|
/*
|
|
forms the dot product of two vectors.
|
|
jack dongarra, linpack, 3/11/78.
|
|
*/
|
|
REAL dx[],dy[];
|
|
|
|
int incx,incy,n;
|
|
{
|
|
REAL dtemp;
|
|
int i,ix,iy,m;
|
|
|
|
dtemp = ZERO;
|
|
|
|
if(n <= 0) return(ZERO);
|
|
|
|
if(incx != 1 || incy != 1) {
|
|
|
|
/* code for unequal increments or equal increments
|
|
not equal to 1 */
|
|
|
|
ix = 0;
|
|
iy = 0;
|
|
if (incx < 0) ix = (-n+1)*incx;
|
|
if (incy < 0) iy = (-n+1)*incy;
|
|
for (i = 0;i < n; i++) {
|
|
dtemp = dtemp + dx[ix]*dy[iy];
|
|
ix = ix + incx;
|
|
iy = iy + incy;
|
|
}
|
|
return(dtemp);
|
|
}
|
|
|
|
/* code for both increments equal to 1 */
|
|
|
|
#ifdef ROLL
|
|
for (i=0;i < n; i++)
|
|
dtemp = dtemp + dx[i]*dy[i];
|
|
return(dtemp);
|
|
#endif
|
|
#ifdef UNROLL
|
|
|
|
m = n % 5;
|
|
if (m != 0) {
|
|
for (i = 0; i < m; i++)
|
|
dtemp = dtemp + dx[i]*dy[i];
|
|
if (n < 5) return(dtemp);
|
|
}
|
|
for (i = m; i < n; i = i + 5) {
|
|
dtemp = dtemp + dx[i]*dy[i] +
|
|
dx[i+1]*dy[i+1] + dx[i+2]*dy[i+2] +
|
|
dx[i+3]*dy[i+3] + dx[i+4]*dy[i+4];
|
|
}
|
|
return(dtemp);
|
|
#endif
|
|
}
|
|
|
|
/*----------------------*/
|
|
int idamax(n,dx,incx)
|
|
|
|
/*
|
|
finds the index of element having max. absolute value.
|
|
jack dongarra, linpack, 3/11/78.
|
|
*/
|
|
|
|
REAL dx[];
|
|
int incx,n;
|
|
{
|
|
REAL dmax;
|
|
int i, ix, itemp=0;
|
|
|
|
if( n < 1 ) return(-1);
|
|
if(n ==1 ) return(0);
|
|
if(incx != 1) {
|
|
|
|
/* code for increment not equal to 1 */
|
|
|
|
ix = 0;
|
|
dmax = fabs((double)dx[0]);
|
|
ix = ix + incx;
|
|
for (i = 1; i < n; i++) {
|
|
if(fabs((double)dx[ix]) > dmax) {
|
|
itemp = i;
|
|
dmax = fabs((double)dx[ix]);
|
|
}
|
|
ix = ix + incx;
|
|
}
|
|
}
|
|
else {
|
|
|
|
/* code for increment equal to 1 */
|
|
|
|
itemp = 0;
|
|
dmax = fabs((double)dx[0]);
|
|
for (i = 1; i < n; i++) {
|
|
if(fabs((double)dx[i]) > dmax) {
|
|
itemp = i;
|
|
dmax = fabs((double)dx[i]);
|
|
}
|
|
}
|
|
}
|
|
return (itemp);
|
|
}
|
|
|
|
/*----------------------*/
|
|
REAL epslon (x)
|
|
REAL x;
|
|
/*
|
|
estimate unit roundoff in quantities of size x.
|
|
*/
|
|
|
|
{
|
|
REAL a,b,c,eps;
|
|
/*
|
|
this program should function properly on all systems
|
|
satisfying the following two assumptions,
|
|
1. the base used in representing dfloating point
|
|
numbers is not a power of three.
|
|
2. the quantity a in statement 10 is represented to
|
|
the accuracy used in dfloating point variables
|
|
that are stored in memory.
|
|
the statement number 10 and the go to 10 are intended to
|
|
force optimizing compilers to generate code satisfying
|
|
assumption 2.
|
|
under these assumptions, it should be true that,
|
|
a is not exactly equal to four-thirds,
|
|
b has a zero for its last bit or digit,
|
|
c is not exactly equal to one,
|
|
eps measures the separation of 1.0 from
|
|
the next larger dfloating point number.
|
|
the developers of eispack would appreciate being informed
|
|
about any systems where these assumptions do not hold.
|
|
|
|
*****************************************************************
|
|
this routine is one of the auxiliary routines used by eispack iii
|
|
to avoid machine dependencies.
|
|
*****************************************************************
|
|
|
|
this version dated 4/6/83.
|
|
*/
|
|
|
|
a = 4.0e0/3.0e0;
|
|
eps = ZERO;
|
|
while (eps == ZERO) {
|
|
b = a - ONE;
|
|
c = b + b + b;
|
|
eps = fabs((double)(c-ONE));
|
|
}
|
|
return(eps*fabs((double)x));
|
|
}
|
|
|
|
/*----------------------*/
|
|
void dmxpy (n1, y, n2, ldm, x, m)
|
|
REAL y[], x[], m[];
|
|
int n1, n2, ldm;
|
|
|
|
/* We would like to declare m[][ldm], but c does not allow it. In this
|
|
function, references to m[i][j] are written m[ldm*i+j]. */
|
|
|
|
/*
|
|
purpose:
|
|
multiply matrix m times vector x and add the result to vector y.
|
|
|
|
parameters:
|
|
|
|
n1 integer, number of elements in vector y, and number of rows in
|
|
matrix m
|
|
|
|
y double [n1], vector of length n1 to which is added
|
|
the product m*x
|
|
|
|
n2 integer, number of elements in vector x, and number of columns
|
|
in matrix m
|
|
|
|
ldm integer, leading dimension of array m
|
|
|
|
x double [n2], vector of length n2
|
|
|
|
m double [ldm][n2], matrix of n1 rows and n2 columns
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
{
|
|
int j,i,jmin;
|
|
/* cleanup odd vector */
|
|
|
|
j = n2 % 2;
|
|
if (j >= 1) {
|
|
j = j - 1;
|
|
for (i = 0; i < n1; i++)
|
|
y[i] = (y[i]) + x[j]*m[ldm*j+i];
|
|
}
|
|
|
|
/* cleanup odd group of two vectors */
|
|
|
|
j = n2 % 4;
|
|
if (j >= 2) {
|
|
j = j - 1;
|
|
for (i = 0; i < n1; i++)
|
|
y[i] = ( (y[i])
|
|
+ x[j-1]*m[ldm*(j-1)+i]) + x[j]*m[ldm*j+i];
|
|
}
|
|
|
|
/* cleanup odd group of four vectors */
|
|
|
|
j = n2 % 8;
|
|
if (j >= 4) {
|
|
j = j - 1;
|
|
for (i = 0; i < n1; i++)
|
|
y[i] = ((( (y[i])
|
|
+ x[j-3]*m[ldm*(j-3)+i])
|
|
+ x[j-2]*m[ldm*(j-2)+i])
|
|
+ x[j-1]*m[ldm*(j-1)+i]) + x[j]*m[ldm*j+i];
|
|
}
|
|
|
|
/* cleanup odd group of eight vectors */
|
|
|
|
j = n2 % 16;
|
|
if (j >= 8) {
|
|
j = j - 1;
|
|
for (i = 0; i < n1; i++)
|
|
y[i] = ((((((( (y[i])
|
|
+ x[j-7]*m[ldm*(j-7)+i]) + x[j-6]*m[ldm*(j-6)+i])
|
|
+ x[j-5]*m[ldm*(j-5)+i]) + x[j-4]*m[ldm*(j-4)+i])
|
|
+ x[j-3]*m[ldm*(j-3)+i]) + x[j-2]*m[ldm*(j-2)+i])
|
|
+ x[j-1]*m[ldm*(j-1)+i]) + x[j] *m[ldm*j+i];
|
|
}
|
|
|
|
/* main loop - groups of sixteen vectors */
|
|
|
|
jmin = (n2%16)+16;
|
|
for (j = jmin-1; j < n2; j = j + 16) {
|
|
for (i = 0; i < n1; i++)
|
|
y[i] = ((((((((((((((( (y[i])
|
|
+ x[j-15]*m[ldm*(j-15)+i])
|
|
+ x[j-14]*m[ldm*(j-14)+i])
|
|
+ x[j-13]*m[ldm*(j-13)+i])
|
|
+ x[j-12]*m[ldm*(j-12)+i])
|
|
+ x[j-11]*m[ldm*(j-11)+i])
|
|
+ x[j-10]*m[ldm*(j-10)+i])
|
|
+ x[j- 9]*m[ldm*(j- 9)+i])
|
|
+ x[j- 8]*m[ldm*(j- 8)+i])
|
|
+ x[j- 7]*m[ldm*(j- 7)+i])
|
|
+ x[j- 6]*m[ldm*(j- 6)+i])
|
|
+ x[j- 5]*m[ldm*(j- 5)+i])
|
|
+ x[j- 4]*m[ldm*(j- 4)+i])
|
|
+ x[j- 3]*m[ldm*(j- 3)+i])
|
|
+ x[j- 2]*m[ldm*(j- 2)+i])
|
|
+ x[j- 1]*m[ldm*(j- 1)+i])
|
|
+ x[j] *m[ldm*j+i];
|
|
}
|
|
}
|
|
|
|
/*----------------------*/
|
|
#ifndef __NO_OS__
|
|
REAL second()
|
|
{
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
|
|
struct rusage ru;
|
|
REAL t ;
|
|
|
|
getrusage(RUSAGE_SELF,&ru) ;
|
|
|
|
t = (REAL) (ru.ru_utime.tv_sec+ru.ru_stime.tv_sec) +
|
|
((REAL) (ru.ru_utime.tv_usec+ru.ru_stime.tv_usec))/1.0e6 ;
|
|
return t ;
|
|
}
|
|
|
|
#else
|
|
|
|
#if 0
|
|
REAL second()
|
|
{
|
|
unsigned long long clock();
|
|
return clock()/1.0e6;
|
|
}
|
|
#endif
|
|
#include <sys/time.h>
|
|
#include <aic_time.h>
|
|
|
|
|
|
REAL second()
|
|
{
|
|
#if 0
|
|
struct timeval tp;
|
|
struct timezone tzp;
|
|
|
|
gettimeofday(&tp,&tzp);
|
|
return ( (REAL) tp.tv_sec + (REAL) tp.tv_usec * 1.e-6 );
|
|
#else
|
|
return ((REAL)aic_get_time_us() * 1.e-6);
|
|
#endif
|
|
|
|
}
|
|
#endif
|
|
|
|
//typedef unsigned int u_int32_t;
|
|
typedef union
|
|
{
|
|
double value;
|
|
struct
|
|
{
|
|
u_int32_t msw;
|
|
u_int32_t lsw;
|
|
} parts;
|
|
uint64_t word;
|
|
} ieee_double_shape_type_e;
|
|
|
|
/* Get all in one, efficient on 64-bit machines. */
|
|
#ifndef EXTRACT_WORDS64
|
|
# define EXTRACT_WORDS64(i,d) \
|
|
do { \
|
|
ieee_double_shape_type_e gh_u; \
|
|
gh_u.value = (d); \
|
|
(i) = gh_u.word; \
|
|
} while (0)
|
|
#endif
|
|
|
|
/* Get all in one, efficient on 64-bit machines. */
|
|
#ifndef INSERT_WORDS64
|
|
# define INSERT_WORDS64(d,i) \
|
|
do { \
|
|
ieee_double_shape_type_e iw_u; \
|
|
iw_u.word = (i); \
|
|
(d) = iw_u.value; \
|
|
} while (0)
|
|
#endif
|
|
|
|
double
|
|
floor (double x)
|
|
{
|
|
int64_t i0;
|
|
EXTRACT_WORDS64(i0,x);
|
|
int32_t j0 = ((i0>>52)&0x7ff)-0x3ff;
|
|
if(__builtin_expect(j0<52, 1)) {
|
|
if(j0<0) {
|
|
/* return 0*sign(x) if |x|<1 */
|
|
if(i0>=0) {i0=0;}
|
|
else if((i0&0x7fffffffffffffffl)!=0)
|
|
{ i0=0xbff0000000000000l;}
|
|
} else {
|
|
uint64_t i = (0x000fffffffffffffl)>>j0;
|
|
if((i0&i)==0) return x; /* x is integral */
|
|
if(i0<0) i0 += (0x0010000000000000l)>>j0;
|
|
i0 &= (~i);
|
|
}
|
|
INSERT_WORDS64(x,i0);
|
|
} else if (j0==0x400)
|
|
return x+x; /* inf or NaN */
|
|
return x;
|
|
}
|
|
|
|
void test_linpack()
|
|
{
|
|
static REAL aa[200][200],a[200][201],b[200],x[200];
|
|
REAL cray,ops,total,norma,normx;
|
|
REAL resid,residn,eps,t1,tm,tm2;
|
|
REAL epslon(),second(),kf;
|
|
static int ipvt[200],n,i,ntimes,info,lda,ldaa,kflops;
|
|
|
|
lda = 201;
|
|
ldaa = 200;
|
|
cray = .056;
|
|
n = 200;
|
|
|
|
fprintf(stdout,ROLLING);fprintf(stdout,PREC);fprintf(stdout,"Precision Linpack\n\n");
|
|
fprintf(stderr,ROLLING);fprintf(stderr,PREC);fprintf(stderr,"Precision Linpack\n\n");
|
|
|
|
ops = (2.0e0*(n*n*n))/3.0 + 2.0*(n*n);
|
|
|
|
matgen(a,lda,n,b,&norma);
|
|
t1 = second();
|
|
dgefa(a,lda,n,ipvt,&info);
|
|
timer[0][0] = second() - t1;
|
|
t1 = second();
|
|
dgesl(a,lda,n,ipvt,b,0);
|
|
timer[1][0] = second() - t1;
|
|
total = timer[0][0] + timer[1][0];
|
|
|
|
/* compute a residual to verify results. */
|
|
|
|
for (i = 0; i < n; i++) {
|
|
x[i] = b[i];
|
|
}
|
|
matgen(a,lda,n,b,&norma);
|
|
for (i = 0; i < n; i++) {
|
|
b[i] = -b[i];
|
|
}
|
|
dmxpy(n,b,n,lda,x,a);
|
|
resid = 0.0;
|
|
normx = 0.0;
|
|
for (i = 0; i < n; i++) {
|
|
resid = (resid > fabs((double)b[i]))
|
|
? resid : fabs((double)b[i]);
|
|
normx = (normx > fabs((double)x[i]))
|
|
? normx : fabs((double)x[i]);
|
|
}
|
|
eps = epslon((REAL)ONE);
|
|
residn = resid/( n*norma*normx*eps );
|
|
|
|
printf(" norm. resid resid machep");
|
|
printf(" x[0]-1 x[n-1]-1\n");
|
|
printf(" %8.1f %16.8e%16.8e%16.8e%16.8e\n",
|
|
(double)residn, (double)resid, (double)eps,
|
|
(double)x[0]-1, (double)x[n-1]-1);
|
|
|
|
fprintf(stderr," times are reported for matrices of order %5d\n",n);
|
|
fprintf(stderr," dgefa dgesl total kflops unit");
|
|
fprintf(stderr," ratio\n");
|
|
|
|
timer[2][0] = total;
|
|
timer[3][0] = ops/(1.0e3*total);
|
|
timer[4][0] = 2.0e3/timer[3][0];
|
|
timer[5][0] = total/cray;
|
|
|
|
fprintf(stderr," times for array with leading dimension of%5d\n",lda);
|
|
print_time(0);
|
|
|
|
matgen(a,lda,n,b,&norma);
|
|
t1 = second();
|
|
dgefa(a,lda,n,ipvt,&info);
|
|
timer[0][1] = second() - t1;
|
|
t1 = second();
|
|
dgesl(a,lda,n,ipvt,b,0);
|
|
timer[1][1] = second() - t1;
|
|
total = timer[0][1] + timer[1][1];
|
|
timer[2][1] = total;
|
|
timer[3][1] = ops/(1.0e3*total);
|
|
timer[4][1] = 2.0e3/timer[3][1];
|
|
timer[5][1] = total/cray;
|
|
|
|
matgen(a,lda,n,b,&norma);
|
|
t1 = second();
|
|
dgefa(a,lda,n,ipvt,&info);
|
|
timer[0][2] = second() - t1;
|
|
t1 = second();
|
|
dgesl(a,lda,n,ipvt,b,0);
|
|
timer[1][2] = second() - t1;
|
|
total = timer[0][2] + timer[1][2];
|
|
timer[2][2] = total;
|
|
timer[3][2] = ops/(1.0e3*total);
|
|
timer[4][2] = 2.0e3/timer[3][2];
|
|
timer[5][2] = total/cray;
|
|
|
|
ntimes = NTIMES;
|
|
tm2 = 0.0;
|
|
t1 = second();
|
|
|
|
for (i = 0; i < ntimes; i++) {
|
|
tm = second();
|
|
matgen(a,lda,n,b,&norma);
|
|
tm2 = tm2 + second() - tm;
|
|
dgefa(a,lda,n,ipvt,&info);
|
|
}
|
|
|
|
timer[0][3] = (second() - t1 - tm2)/ntimes;
|
|
t1 = second();
|
|
|
|
for (i = 0; i < ntimes; i++) {
|
|
dgesl(a,lda,n,ipvt,b,0);
|
|
}
|
|
|
|
timer[1][3] = (second() - t1)/ntimes;
|
|
total = timer[0][3] + timer[1][3];
|
|
timer[2][3] = total;
|
|
timer[3][3] = ops/(1.0e3*total);
|
|
timer[4][3] = 2.0e3/timer[3][3];
|
|
timer[5][3] = total/cray;
|
|
|
|
print_time(1);
|
|
print_time(2);
|
|
print_time(3);
|
|
|
|
matgen(aa,ldaa,n,b,&norma);
|
|
t1 = second();
|
|
dgefa(aa,ldaa,n,ipvt,&info);
|
|
timer[0][4] = second() - t1;
|
|
t1 = second();
|
|
dgesl(aa,ldaa,n,ipvt,b,0);
|
|
timer[1][4] = second() - t1;
|
|
total = timer[0][4] + timer[1][4];
|
|
timer[2][4] = total;
|
|
timer[3][4] = ops/(1.0e3*total);
|
|
timer[4][4] = 2.0e3/timer[3][4];
|
|
timer[5][4] = total/cray;
|
|
|
|
matgen(aa,ldaa,n,b,&norma);
|
|
t1 = second();
|
|
dgefa(aa,ldaa,n,ipvt,&info);
|
|
timer[0][5] = second() - t1;
|
|
t1 = second();
|
|
dgesl(aa,ldaa,n,ipvt,b,0);
|
|
timer[1][5] = second() - t1;
|
|
total = timer[0][5] + timer[1][5];
|
|
timer[2][5] = total;
|
|
timer[3][5] = ops/(1.0e3*total);
|
|
timer[4][5] = 2.0e3/timer[3][5];
|
|
timer[5][5] = total/cray;
|
|
|
|
matgen(aa,ldaa,n,b,&norma);
|
|
t1 = second();
|
|
dgefa(aa,ldaa,n,ipvt,&info);
|
|
timer[0][6] = second() - t1;
|
|
t1 = second();
|
|
dgesl(aa,ldaa,n,ipvt,b,0);
|
|
timer[1][6] = second() - t1;
|
|
total = timer[0][6] + timer[1][6];
|
|
timer[2][6] = total;
|
|
timer[3][6] = ops/(1.0e3*total);
|
|
timer[4][6] = 2.0e3/timer[3][6];
|
|
timer[5][6] = total/cray;
|
|
|
|
ntimes = NTIMES;
|
|
tm2 = 0;
|
|
t1 = second();
|
|
for (i = 0; i < ntimes; i++) {
|
|
tm = second();
|
|
matgen(aa,ldaa,n,b,&norma);
|
|
tm2 = tm2 + second() - tm;
|
|
dgefa(aa,ldaa,n,ipvt,&info);
|
|
}
|
|
timer[0][7] = (second() - t1 - tm2)/ntimes;
|
|
t1 = second();
|
|
for (i = 0; i < ntimes; i++) {
|
|
dgesl(aa,ldaa,n,ipvt,b,0);
|
|
}
|
|
timer[1][7] = (second() - t1)/ntimes;
|
|
total = timer[0][7] + timer[1][7];
|
|
timer[2][7] = total;
|
|
timer[3][7] = ops/(1.0e3*total);
|
|
timer[4][7] = 2.0e3/timer[3][7];
|
|
timer[5][7] = total/cray;
|
|
|
|
/* the following code sequence implements the semantics of
|
|
the Fortran intrinsics "nint(min(timer[3][3],timer[3][7]))" */
|
|
|
|
kf = (timer[3][3] < timer[3][7]) ? timer[3][3] : timer[3][7];
|
|
kf = (kf > ZERO) ? (kf + .5) : (kf - .5);
|
|
if (fabs((double)kf) < ONE)
|
|
kflops = 0;
|
|
else {
|
|
kflops = floor(fabs((double)kf));
|
|
if (kf < ZERO) kflops = -kflops;
|
|
}
|
|
|
|
fprintf(stderr," times for array with leading dimension of%4d\n",ldaa);
|
|
print_time(4);
|
|
print_time(5);
|
|
print_time(6);
|
|
print_time(7);
|
|
fprintf(stderr,ROLLING);fprintf(stderr,PREC);
|
|
fprintf(stderr," Precision %5d Kflops ; %d Reps \n",kflops,NTIMES);
|
|
|
|
#ifdef DP
|
|
printf("Linpack_dp runs successfully!\n");
|
|
#else
|
|
printf("Linpack_sp runs successfully!\n");
|
|
#endif
|
|
}
|
|
|
|
MSH_CMD_EXPORT(test_linpack, "Linpack benchmark")
|
|
|