Files
luban-lite-t3e-pro/bsp/artinchip/hal/psadc/hal_psadc.c
刘可亮 0a13af6a1d V1.0.5
2024-06-04 19:00:30 +08:00

291 lines
7.0 KiB
C

/*
* Copyright (c) 2022-2023, ArtInChip Technology Co., Ltd
*
* SPDX-License-Identifier: Apache-2.0
*
* Authors: Li Siyao <siyao.li@artinchip.com>
*/
#include "aic_core.h"
#include "hal_psadc.h"
#include <string.h>
/* Register definition of PSADC Controller */
#define PSADC_MCR 0x000
#define PSADC_TCR 0x004
#define PSADC_NODE1 0x008
#define PSADC_NODE2 0x00C
#define PSADC_MSR 0x010
#define PSADC_CALCSR 0x014
#define PSADC_FILTER 0x01C
#define PSADC_Q1FCR 0x020
#define PSADC_Q2FCR 0x024
#define PSADC_Q1FDR 0x040
#define PSADC_Q2FDR 0x080
#define PSADC_VERSION 0xFFC
#define PSADC_MCR_Q1_TRIGS BIT(22)
#define PSADC_MCR_Q1_INTE BIT(18)
#define PSADC_MCR_QUE_COMB BIT(1)
#define PSADC_MCR_EN BIT(0)
#define PSADC_TCR_Q2_TRIG_CNT_SHIFT 4
#define PSADC_QX_NODE_MASK 4
#define PSADC_MSR_QX_CNT_MASK GENMASK(27, 24)
#define PSADC_MSR_Q2_FERR BIT(6)
#define PSADC_MSR_Q2_INT BIT(4)
#define PSADC_MSR_Q1_FERR BIT(2)
#define PSADC_MSR_Q1_INT BIT(0)
#define PSADC_Q1FCR_FIFO_DRTH_SHIFT 11
#define PSADC_Q1FCR_UF_STS BIT(17)
#define PSADC_Q1FCR_OF_STS BIT(16)
#define PSADC_Q1FCR_FIFO_ERRIE BIT(3)
#define PSADC_Q1FCR_FIFO_FLUSH BIT(0)
#define PSADC_Q2FCR_FIFO_DRTH_SHIFT 11
#define PSADC_Q2FCR_UF_STS BIT(17)
#define PSADC_Q2FCR_OF_STS BIT(16)
#define PSADC_Q2FCR_FIFO_ERRIE BIT(3)
#define PSADC_Q2FCR_FIFO_FLUSH BIT(0)
#define PSADC_Q1FDR_CHNUM_SHIFT 12
#define PSADC_Q1FDR_CHNUM_MASK GENMASK(15, 12)
#define PSADC_Q1FDR_DATA_MASK GENMASK(11, 0)
#define PSADC_Q1FDR_DATA BIT(0)
#define PSADC_Q2FDR_CHNUM_SHIFT 12
#define PSADC_Q2FDR_CHNUM_MASK GENMASK(15, 12)
#define PSADC_Q2FDR_DATA_MASK GENMASK(11, 0)
#define PSADC_Q2FDR_DATA BIT(0)
extern struct aic_psadc_ch aic_psadc_chs[];
extern struct aic_psadc_queue aic_psadc_queues[];
static u32 aic_psadc_ch_num = 0; // the number of available channel
static u32 aic_psadc_ch_data[AIC_PSADC_CH_NUM];
static inline void psadc_writel(u32 val, int reg)
{
writel(val, PSADC_BASE + reg);
}
static inline u32 psadc_readl(int reg)
{
return readl(PSADC_BASE + reg);
}
static void psadc_reg_enable(int offset, int bit, int enable)
{
int tmp = psadc_readl(offset);
if (enable)
tmp |= bit;
else
tmp &= ~bit;
psadc_writel(tmp, offset);
}
void hal_psadc_enable(int enable)
{
psadc_reg_enable(PSADC_MCR, PSADC_MCR_EN, enable);
}
void hal_psadc_single_queue_mode(int enable)
{
psadc_reg_enable(PSADC_MCR, PSADC_MCR_QUE_COMB, enable);
}
void hal_psadc_qc_irq_enable(int enable)
{
psadc_reg_enable(PSADC_MCR, PSADC_MCR_Q1_INTE, enable);
}
static void psadc_fifo1_flush()
{
u32 val = psadc_readl(PSADC_Q1FCR);
if (val & PSADC_Q1FCR_UF_STS)
pr_err("FIFO is Underflow!%#x\n", val);
if (val & PSADC_Q1FCR_OF_STS)
pr_err("FIFO is Overflow!%#x\n", val);
psadc_writel(val | PSADC_Q1FCR_FIFO_FLUSH, PSADC_Q1FCR);
}
static void psadc_fifo_init(void)
{
u32 val = 0;
val = 1 << PSADC_Q1FCR_FIFO_DRTH_SHIFT;
psadc_writel(val, PSADC_Q1FCR);
psadc_writel(val, PSADC_Q2FCR);
}
int hal_psadc_set_queue_node(int queue, int ch, int node_ordinal)
{
int val;
int node_chan = 0;
u32 node_regs = 0;
if (queue == AIC_PSADC_Q1)
node_regs = PSADC_NODE1;
if (queue == AIC_PSADC_Q2)
node_regs = PSADC_NODE2;
node_chan = ch << (node_ordinal * PSADC_QX_NODE_MASK);
val = psadc_readl(node_regs);
val |= node_chan;
psadc_writel(val, node_regs);
return 0;
}
int hal_psadc_ch_init()
{
int val = 0;
struct aic_psadc_queue *queue = &aic_psadc_queues[0];
psadc_fifo_init();
if (queue->type == AIC_PSADC_QC) {
val = queue->nodes_num;
psadc_writel(val, PSADC_TCR);
}
psadc_reg_enable(PSADC_MCR, PSADC_MCR_Q1_INTE, 1);
return 0;
}
void aich_psadc_status_show(void)
{
int version = psadc_readl(PSADC_VERSION);
printf("In PSADC V%d.%02d\n"
"enabled %d channels: ",
version >> 8, version & 0xff,
aic_psadc_ch_num);
for (int i = 0; i < aic_psadc_ch_num; i++) {
if (aic_psadc_chs[i].available)
printf("[%d] ", aic_psadc_chs[i].id);
}
printf("\n");
return;
}
static void psadc_read_ch(int cnt)
{
u32 data;
int val;
val = psadc_readl(PSADC_Q1FDR);
data = val & PSADC_Q1FDR_DATA_MASK;
aic_psadc_ch_data[cnt] = data;
pr_debug("val %#x\n", val);
}
struct aic_psadc_ch *hal_psadc_ch_is_valid(u32 ch)
{
s32 i;
if (ch >= AIC_PSADC_CH_NUM) {
pr_err("Invalid channel %d\n", ch);
return NULL;
}
for (i = 0; i < aic_psadc_ch_num; i++) {
if (aic_psadc_chs[i].id != ch)
continue;
if (aic_psadc_chs[i].available)
return &aic_psadc_chs[i];
else
break;
}
pr_debug("Ch%d is unavailable!\n", ch);
return NULL;
}
int hal_psadc_read(u32 *val, u32 timeout)
{
int ret = 0;
struct aic_psadc_queue *queue = &aic_psadc_queues[AIC_PSADC_QC];
psadc_fifo1_flush();
psadc_reg_enable(PSADC_MCR, PSADC_MCR_Q1_TRIGS, 1);
ret = aicos_sem_take(queue->complete, timeout);
if (ret < 0) {
hal_log_err("Queue%d read timeout!\n", queue->id);
hal_psadc_qc_irq_enable(0);
return -ETIMEDOUT;
}
if (val)
memcpy(val, aic_psadc_ch_data, sizeof(aic_psadc_ch_data));
return 0;
}
int hal_psadc_read_poll(u32 *val, u32 timeout)
{
u32 q_flag = 0;
int get_data_flag = 0;
int time_count = 0;
struct aic_psadc_queue *queue = &aic_psadc_queues[AIC_PSADC_QC];
psadc_fifo1_flush();
psadc_reg_enable(PSADC_MCR, PSADC_MCR_Q1_TRIGS, 1);
while (1) {
time_count++;
q_flag = psadc_readl(PSADC_MSR);
psadc_writel(q_flag, PSADC_MSR);
if (q_flag & PSADC_MSR_Q1_INT) {
get_data_flag++;
for(int i = 0; i < queue->nodes_num; i++)
psadc_read_ch(i);
}
if (q_flag & PSADC_MSR_Q1_FERR)
psadc_fifo1_flush();
if (get_data_flag)
break;
if (time_count > timeout) {
hal_psadc_qc_irq_enable(0);
return -ETIMEDOUT;
}
}
if (val)
memcpy(val, aic_psadc_ch_data,
sizeof(aic_psadc_ch_data[0]) * queue->nodes_num);
return 0;
}
irqreturn_t hal_psadc_isr(int irq, void *arg)
{
u32 q_flag = 0;
struct aic_psadc_queue *queue = &aic_psadc_queues[AIC_PSADC_QC];
q_flag = psadc_readl(PSADC_MSR);
psadc_writel(q_flag, PSADC_MSR);
if (q_flag & PSADC_MSR_Q1_INT) {
for(int i = 0; i < queue->nodes_num; i++)
psadc_read_ch(i);
aicos_sem_give(queue->complete);
}
if (q_flag & PSADC_MSR_Q1_FERR)
psadc_fifo1_flush();
return IRQ_HANDLED;
}
void hal_psadc_set_ch_num(u32 num)
{
aic_psadc_ch_num = num;
}