Files
luban-lite-t3e-pro/bsp/examples/test-spinor/test_sfud.c
刘可亮 0a13af6a1d V1.0.5
2024-06-04 19:00:30 +08:00

506 lines
16 KiB
C

/*
* Copyright (c) 2024, ArtInChip Technology Co., Ltd
*
* SPDX-License-Identifier: Apache-2.0
*
* Authors: Jiji.CHen <jiji.chen@artinchip.com>
*/
#include <stdint.h>
#include <string.h>
#include <rtdevice.h>
#include <spienc.h>
#include "spi_flash.h"
#include "spi_flash_sfud.h"
#include "aic_time.h"
#include <aic_core.h>
#include <finsh.h>
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
#define HEXDUMP_WIDTH 16
#define CMD_PROBE_INDEX 0
#define CMD_READ_INDEX 1
#define CMD_WRITE_INDEX 2
#define CMD_ERASE_INDEX 3
#define CMD_RW_STATUS_INDEX 4
#define CMD_BYPASS_INDEX 5
#define CMD_BENCH_INDEX 6
#define CMD_WRITE_LEN_INDEX 7
#define CMD_REW_INDEX 8
const char* sf_help_info[] = {
[CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
[CMD_READ_INDEX] = "sf read addr size <dis_print> - read 'size' bytes starting at 'addr' '1:dis-print|0:print' data",
[CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
[CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
[CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
#if defined(AIC_SPIENC_DRV)
[CMD_BYPASS_INDEX] = "sf bypass status - status 0:disable' 1:'enable'",
#endif
[CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
[CMD_WRITE_LEN_INDEX] = "sf write_len addr size - write 'size' bytes to flash starting at 'addr'",
[CMD_REW_INDEX] = "sf read_erase_write addr size - test the whole speed of read-erase-write process",
};
static sfud_flash *g_sfud_dev = NULL;
static void sf_usage()
{
int i;
rt_kprintf("Usage:\n");
for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
rt_kprintf("%s\n", sf_help_info[i]);
}
rt_kprintf("\n");
return;
}
static void show_speed(char *msg, u32 len, u32 us)
{
u32 tmp, speed;
/* Split to serval step to avoid overflow */
tmp = 1000 * len;
tmp = tmp / us;
tmp = 1000 * tmp;
speed = tmp / 1024;
printf("%s: %d byte, %d us -> %d KB/s\n", msg, len, us, speed);
}
static void hex_dump(uint8_t *data, uint32_t addr, uint32_t size, uint32_t dump_width)
{
uint32_t i, j;
for (i = 0; i < size; i += dump_width)
{
rt_kprintf("[%08X] ", addr + i);
/* dump hex */
for (j = 0; j < dump_width; j++) {
if (i + j < size) {
rt_kprintf("%02X ", data[i + j]);
} else {
rt_kprintf(" ");
}
}
/* dump char for hex */
for (j = 0; j < dump_width; j++) {
if (i + j < size) {
rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
}
}
rt_kprintf("\n");
}
}
static void sf_do_probe(uint8_t argc, char **argv)
{
static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
if (argc < 1) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
return;
}
char *spi_dev_name = argv[0];
rtt_dev_bak = rtt_dev;
/* delete the old SPI flash device */
if(rtt_dev_bak) {
rt_sfud_flash_delete(rtt_dev_bak);
}
rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
if (!rtt_dev) {
rt_kprintf("sfud probe flash fail!\n");
return;
}
g_sfud_dev = (sfud_flash_t)rtt_dev->user_data;
if (g_sfud_dev->chip.capacity < 1024 * 1024)
rt_kprintf("%d KB %s is current selected device.\n", g_sfud_dev->chip.capacity / 1024, g_sfud_dev->name);
else
rt_kprintf("%d MB %s is current selected device.\n", g_sfud_dev->chip.capacity / 1024 / 1024,
g_sfud_dev->name);
}
static void sf_do_read(uint8_t argc, char **argv)
{
sfud_err result = SFUD_SUCCESS;
uint32_t addr, size;
int dis_print = 0;
uint64_t start_us;
uint8_t *data;
if (!g_sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
if (argc < 2) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
return;
}
if (argc == 3)
dis_print = strtol(argv[2], NULL, 0);
addr = strtol(argv[0], NULL, 0);
size = strtol(argv[1], NULL, 0);
data = aicos_malloc_align(0, size, CACHE_LINE_SIZE);
if (data) {
start_us = aic_get_time_us();
result = sfud_read(g_sfud_dev, addr, size, data);
show_speed("sfud_read speed", size, aic_get_time_us() - start_us);
if (result == SFUD_SUCCESS) {
rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld.\n",
g_sfud_dev->name, addr, size);
if (dis_print != 1) {
rt_kprintf("The data is:\n");
rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
hex_dump(data, addr, size, HEXDUMP_WIDTH);
}
rt_kprintf("\n");
}
aicos_free_align(0, data);
} else {
rt_kprintf("Low memory!\n");
}
}
static void sf_do_write(uint8_t argc, char **argv)
{
uint32_t addr, size;
uint8_t *data;
int i;
if (!g_sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
if (argc < 2) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
return;
}
addr = strtol(argv[0], NULL, 0);
size = argc - 1;
data = rt_malloc(size);
if (data) {
for (i = 0; i < size; i++) {
data[i] = strtol(argv[1 + i], NULL, 0);
}
if (SFUD_SUCCESS == sfud_write(g_sfud_dev, addr, size, data)) {
rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
g_sfud_dev->name, addr, size);
rt_kprintf("Write data: ");
for (i = 0; i < size; i++) {
rt_kprintf("%d ", data[i]);
}
rt_kprintf(".\n");
}
rt_free(data);
} else {
rt_kprintf("Low memory!\n");
}
}
static void sf_do_write_len(uint8_t argc, char **argv)
{
sfud_err result = SFUD_SUCCESS;
uint32_t addr, size;
uint64_t start_us;
uint8_t *data;
if (!g_sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
if (argc < 2) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_LEN_INDEX]);
return;
}
addr = strtol(argv[0], NULL, 0);
size = strtol(argv[1], NULL, 0);
data = aicos_malloc_align(0, size, CACHE_LINE_SIZE);
if (data) {
start_us = aic_get_time_us();
result = sfud_write(g_sfud_dev, addr, size, data);
show_speed("sfud_write speed", size, aic_get_time_us() - start_us);
if (result == SFUD_SUCCESS) {
rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
g_sfud_dev->name, addr, size);
}
aicos_free_align(0, data);
} else {
rt_kprintf("Low memory!\n");
}
}
static void sf_do_erase(uint8_t argc, char **argv)
{
uint32_t addr, size;
if (!g_sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
if (argc < 2) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
return;
}
addr = strtol(argv[0], NULL, 0);
size = strtol(argv[1], NULL, 0);
if (SFUD_SUCCESS == sfud_erase(g_sfud_dev, addr, size)) {
rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", g_sfud_dev->name,
addr, size);
}
}
static void sf_do_status(uint8_t argc, char **argv)
{
uint8_t status;
bool is_volatile;
if (!g_sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
if (argc < 1) {
if (SFUD_SUCCESS == sfud_read_status(g_sfud_dev, &status)) {
rt_kprintf("The %s flash status register current value is 0x%02X.\n", g_sfud_dev->name, status);
}
} else if (argc == 2) {
is_volatile = strtol(argv[2], NULL, 0);
status = strtol(argv[3], NULL, 0);
if (SFUD_SUCCESS == sfud_write_status(g_sfud_dev, is_volatile, status))
rt_kprintf("Write the %s flash status register to 0x%02X success.\n", g_sfud_dev->name, status);
} else {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
return;
}
}
static void sf_bench_write(uint32_t addr, uint32_t size, uint8_t *write_data)
{
size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE;
uint32_t start_time, time_cast;
sfud_err result = SFUD_SUCCESS;
size_t cur_op_size;
int i;
rt_kprintf("Writing the %s %ld bytes data, waiting...\n", g_sfud_dev->name, size);
start_time = rt_tick_get();
for (i = 0; i < size; i += write_size) {
if (i + write_size <= size) {
cur_op_size = write_size;
} else {
cur_op_size = size - i;
}
result = sfud_write(g_sfud_dev, addr + i, cur_op_size, write_data);
if (result != SFUD_SUCCESS) {
rt_kprintf("Writing %s failed, already wr for %lu bytes, write %d each time\n", g_sfud_dev->name, i, write_size);
break;
}
}
if (result == SFUD_SUCCESS) {
time_cast = rt_tick_get() - start_time;
rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
} else {
rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
}
}
static void sf_bench_read(uint32_t addr, uint32_t size, uint8_t *read_data, uint8_t * write_data)
{
size_t read_size = SFUD_WRITE_MAX_PAGE_SIZE;
uint32_t start_time, time_cast;
sfud_err result = SFUD_SUCCESS;
size_t cur_op_size;
int i;
rt_kprintf("Reading the %s %ld bytes data, waiting...\n", g_sfud_dev->name, size);
start_time = rt_tick_get();
for (i = 0; i < size; i += read_size) {
if (i + read_size <= size) {
cur_op_size = read_size;
} else {
cur_op_size = size - i;
}
result = sfud_read(g_sfud_dev, addr + i, cur_op_size, read_data);
/* data check */
if (memcmp(write_data, read_data, cur_op_size))
{
rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
result = SFUD_ERR_READ;
}
if (result != SFUD_SUCCESS) {
rt_kprintf("Read %s failed, already rd for %lu bytes, read %d each time\n", g_sfud_dev->name, i, read_size);
break;
}
}
if (result == SFUD_SUCCESS) {
time_cast = rt_tick_get() - start_time;
rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
} else {
rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
}
}
static void sf_do_bench(uint8_t argc, char **argv)
{
uint8_t *write_data, *read_data;
uint32_t start_time, time_cast;
size_t read_size, write_size;
sfud_err result = SFUD_SUCCESS;
uint32_t addr, size;
int i;
if (!g_sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
if ((argc > 0 && rt_strcmp(argv[0], "yes")) || argc < 1) {
rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
return;
}
/* full chip benchmark test */
addr = 0;
size = g_sfud_dev->chip.capacity;
read_size = SFUD_WRITE_MAX_PAGE_SIZE;
write_size = SFUD_WRITE_MAX_PAGE_SIZE;
write_data = rt_malloc(write_size);
read_data = rt_malloc(read_size);
if (write_data && read_data) {
for (i = 0; i < write_size; i ++) {
write_data[i] = i & 0xFF;
}
/* benchmark testing */
rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", g_sfud_dev->name, size);
start_time = rt_tick_get();
result = sfud_erase(g_sfud_dev, addr, size);
if (result == SFUD_SUCCESS) {
time_cast = rt_tick_get() - start_time;
rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
} else {
rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
}
/* write test */
sf_bench_write(addr, size, write_data);
/* read test */
sf_bench_read(addr, size, read_data, write_data);
} else {
rt_kprintf("Low memory!\n");
}
rt_free(write_data);
rt_free(read_data);
}
static void sf_do_read_erase_write(uint8_t argc, char **argv)
{
sfud_err result = SFUD_SUCCESS;
uint32_t addr, size;
uint64_t start_us;
uint8_t *data1, *data2;
if (!g_sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
if (argc < 2) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_REW_INDEX]);
return;
}
addr = strtol(argv[0], NULL, 0);
size = strtol(argv[1], NULL, 0);
data1 = aicos_malloc_align(0, size, CACHE_LINE_SIZE);
data2 = aicos_malloc_align(0, size, CACHE_LINE_SIZE);
if (data1 != NULL && data2 != NULL) {
start_us = aic_get_time_us();
result = sfud_read(g_sfud_dev, addr, size, data1);
if (result != SFUD_SUCCESS) {
rt_kprintf("Read data failed!\n");
return;
}
result = sfud_erase(g_sfud_dev, addr, size);
if (result != SFUD_SUCCESS) {
rt_kprintf("Erase data failed!\n");
return;
}
memset(data2, 0x00, size);
result = sfud_write(g_sfud_dev, addr, size, data2);
if (result != SFUD_SUCCESS) {
rt_kprintf("Write data failed!\n");
return;
}
show_speed("sfud read_erase_write speed", size, aic_get_time_us() - start_us);
rt_kprintf("read data1:\n");
hex_dump(data1, addr, 256, HEXDUMP_WIDTH);
rt_kprintf("write data2:\n");
hex_dump(data2, addr, 256, HEXDUMP_WIDTH);
aicos_free_align(0, data1);
aicos_free_align(0, data2);
} else {
rt_kprintf("Low memory!\n");
}
}
static void sf(uint8_t argc, char **argv)
{
if (argc < 2) {
sf_usage();
return;
}
const char *operator = argv[1];
if (!strcmp(operator, "probe")) {
sf_do_probe(argc - 2, &argv[2]);
#if defined(AIC_SPIENC_DRV)
} else if (!strcmp(operator, "bypass")) {
uint32_t status;
if (!g_sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
status = strtol(argv[2], NULL, 0);
spienc_set_bypass(status);
#endif
} else if (!rt_strcmp(operator, "read")) {
sf_do_read(argc - 2, &argv[2]);
} else if (!rt_strcmp(operator, "write")) {
sf_do_write(argc - 2, &argv[2]);
} else if (!rt_strcmp(operator, "write_len")) {
sf_do_write_len(argc - 2, &argv[2]);
} else if (!rt_strcmp(operator, "erase")) {
sf_do_erase(argc - 2, &argv[2]);
} else if (!rt_strcmp(operator, "status")) {
sf_do_status(argc - 2, &argv[2]);
} else if (!rt_strcmp(operator, "bench")) {
sf_do_bench(argc - 2, &argv[2]);
} else if (!rt_strcmp(operator, "read_erase_write")) {
sf_do_read_erase_write(argc - 2, &argv[2]);
} else {
sf_usage();
}
}
MSH_CMD_EXPORT(sf, SPI Flash operate);