#ifndef _LINUX_BIT_OPS_H_ #define _LINUX_BIT_OPS_H_ #include #include #include #define BITS_PER_LONG 32 #define BITS_PER_LONG_LONG 64 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) #undef BIT #define BIT(nr) (1UL << (nr)) #define BIT_ULL(nr) (1ULL << (nr)) #define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG)) #define BIT_WORD(nr) ((nr) / BITS_PER_LONG) #define BIT_ULL_MASK(nr) (1ULL << ((nr) % BITS_PER_LONG_LONG)) #define BIT_ULL_WORD(nr) ((nr) / BITS_PER_LONG_LONG) #define BITS_PER_BYTE 8 #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long)) #define ffs __ffs #define ffz(x) __ffs(~(x)) static inline unsigned long __ffs(unsigned long word) { int num = 0; #if BITS_PER_LONG == 64 if ((word & 0xffffffff) == 0) { num += 32; word >>= 32; } #endif if ((word & 0xffff) == 0) { num += 16; word >>= 16; } if ((word & 0xff) == 0) { num += 8; word >>= 8; } if ((word & 0xf) == 0) { num += 4; word >>= 4; } if ((word & 0x3) == 0) { num += 2; word >>= 2; } if ((word & 0x1) == 0) { num += 1; } return num; } static inline unsigned long __fls(unsigned long word) { int num = BITS_PER_LONG - 1; #if BITS_PER_LONG == 64 if (!(word & (~0ul << 32))) { num -= 32; word <<= 32; } #endif if (!(word & (~0ul << (BITS_PER_LONG - 16)))) { num -= 16; word <<= 16; } if (!(word & (~0ul << (BITS_PER_LONG - 8)))) { num -= 8; word <<= 8; } if (!(word & (~0ul << (BITS_PER_LONG - 4)))) { num -= 4; word <<= 4; } if (!(word & (~0ul << (BITS_PER_LONG - 2)))) { num -= 2; word <<= 2; } if (!(word & (~0ul << (BITS_PER_LONG - 1)))) { num -= 1; } return num; } static inline int fls(int x) { int r = 32; if (!x) { return 0; } if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1; } return r; } #if BITS_PER_LONG == 32 static __always_inline int fls64(__u64 x) { __u32 h = x >> 32; if (h){ return fls(h) + 32; } return fls(x); } #elif BITS_PER_LONG == 64 static __always_inline int fls64(__u64 x) { if (x == 0) { return 0; } return __fls(x) + 1; } #else #error BITS_PER_LONG not 32 or 64 #endif static inline unsigned long __ffs64(u64 word) { #if BITS_PER_LONG == 32 if (((u32)word) == 0UL) return __ffs((u32)(word >> 32)) + 32; #elif BITS_PER_LONG != 64 #error BITS_PER_LONG not 32 or 64 #endif return __ffs((unsigned long)word); } /** * rol64 - rotate a 64-bit value left * @word: value to rotate * @shift: bits to roll */ static inline __u64 rol64(__u64 word, unsigned int shift) { return (word << shift) | (word >> (64 - shift)); } /** * ror64 - rotate a 64-bit value right * @word: value to rotate * @shift: bits to roll */ static inline __u64 ror64(__u64 word, unsigned int shift) { return (word >> shift) | (word << (64 - shift)); } /** * rol32 - rotate a 32-bit value left * @word: value to rotate * @shift: bits to roll */ static inline __u32 rol32(__u32 word, unsigned int shift) { return (word << shift) | (word >> (32 - shift)); } /** * ror32 - rotate a 32-bit value right * @word: value to rotate * @shift: bits to roll */ static inline __u32 ror32(__u32 word, unsigned int shift) { return (word >> shift) | (word << (32 - shift)); } /** * rol16 - rotate a 16-bit value left * @word: value to rotate * @shift: bits to roll */ static inline __u16 rol16(__u16 word, unsigned int shift) { return (word << shift) | (word >> (16 - shift)); } /** * ror16 - rotate a 16-bit value right * @word: value to rotate * @shift: bits to roll */ static inline __u16 ror16(__u16 word, unsigned int shift) { return (word >> shift) | (word << (16 - shift)); } /** * rol8 - rotate an 8-bit value left * @word: value to rotate * @shift: bits to roll */ static inline __u8 rol8(__u8 word, unsigned int shift) { return (word << shift) | (word >> (8 - shift)); } /** * ror8 - rotate an 8-bit value right * @word: value to rotate * @shift: bits to roll */ static inline __u8 ror8(__u8 word, unsigned int shift) { return (word >> shift) | (word << (8 - shift)); } /** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * * Note: there are no guarantees that this function will not be reordered * on non x86 architectures, so if you are writing portable code, * make sure not to rely on its reordering guarantees. * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void set_bit(int nr, volatile unsigned long *addr) { unsigned int intr = sys_disable_irq(); unsigned long mask = BIT_MASK(nr); *addr |= mask; sys_enable_irq(intr); } /** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static inline int test_bit(int nr, const volatile unsigned long *addr) { return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1))); } /** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ static inline void clear_bit(int nr, volatile unsigned long *addr) { unsigned int intr = sys_disable_irq(); unsigned long mask = BIT_MASK(nr); *addr &= ~mask; sys_enable_irq(intr); } /** * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. It may be * reordered on other architectures than x86. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void change_bit(int nr, volatile unsigned long *addr) { unsigned int intr = sys_disable_irq(); unsigned long mask = BIT_MASK(nr); *addr ^= mask; sys_enable_irq(intr); } /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It may be reordered on other architectures than x86. * It also implies a memory barrier. */ static inline int test_and_set_bit(int nr, volatile unsigned long *addr) { unsigned int intr = sys_disable_irq(); unsigned long mask = BIT_MASK(nr); unsigned long old; old = *addr; *addr |= mask; sys_enable_irq(intr); return (old & mask) != 0; } /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It can be reorderdered on other architectures other than x86. * It also implies a memory barrier. */ static inline int test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned int intr = sys_disable_irq(); unsigned long mask = BIT_MASK(nr); unsigned long old; old = *addr; *addr = old & ~mask; sys_enable_irq(intr); return (old & mask) != 0; } /** * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_change_bit(int nr, volatile unsigned long *addr) { unsigned int intr = sys_disable_irq(); unsigned long mask = BIT_MASK(nr); unsigned long old; old = *addr; *addr = old ^ mask; sys_enable_irq(intr); return (old & mask) != 0; } /** * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static inline void __set_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p |= mask; } static inline void __clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p &= ~mask; } /** * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static inline void __change_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p ^= mask; } /** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old | mask; return (old & mask) != 0; } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old & ~mask; return (old & mask) != 0; } static inline unsigned fls_long(unsigned long l) { if (sizeof(l) == 4) return fls(l); return fls64(l); } /* WARNING: non atomic and it can be reordered! */ static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old ^ mask; return (old & mask) != 0; } #define for_each_set_bit(bit, addr, size) \ for ((bit) = find_first_bit((addr), (size)); \ (bit) < (size); \ (bit) = find_next_bit((addr), (size), (bit) + 1)) #define GENMASK_INPUT_CHECK(h, l) 0 #define __GENMASK(h, l) \ (((~(0UL)) - ((1UL) << (l)) + 1) & \ (~(0UL) >> (BITS_PER_LONG - 1 - (h)))) #define GENMASK(h, l) \ (GENMASK_INPUT_CHECK(h, l) + __GENMASK(h, l)) #define __GENMASK_ULL(h, l) \ (((~(0ULL)) - ((1ULL) << (l)) + 1) & \ (~(0ULL) >> (BITS_PER_LONG_LONG - 1 - (h)))) #define GENMASK_ULL(h, l) \ (GENMASK_INPUT_CHECK(h, l) + __GENMASK_ULL(h, l)) u32 le32_get_bits(u32 val, u32 mask); u32 u32_get_bits(u32 val, u32 mask); u8 u8_get_bits(u8 val, u8 mask); u16 le16_get_bits(u16 val, u16 mask); u16 u16_get_bits(u16 val, u16 mask); u8 u8_encode_bits(u8 val, u8 mask); u16 u16_encode_bits(u16 val, u16 mask); u32 u32_encode_bits(u32 val, u32 mask); #endif