/* * Copyright (c) 2023 ASR Microelectronics (Shanghai) Co., Ltd. All rights reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ASR_CRYPTO_H #define ASR_CRYPTO_H #include "common.h" /** * aes_encrypt_init - Initialize AES for encryption * @key: Encryption key * @len: Key length in bytes (usually 16, i.e., 128 bits) * Returns: Pointer to context data or %NULL on failure */ void * aes_encrypt_init(const u8 *key, size_t len); /** * aes_encrypt - Encrypt one AES block * @ctx: Context pointer from aes_encrypt_init() * @plain: Plaintext data to be encrypted (16 bytes) * @crypt: Buffer for the encrypted data (16 bytes) * Returns: 0 on success, -1 on failure */ int aes_encrypt_wpa3(void *ctx, const u8 *plain, u8 *crypt); /** * aes_encrypt_deinit - Deinitialize AES encryption * @ctx: Context pointer from aes_encrypt_init() */ void aes_encrypt_deinit(void *ctx); /** * aes_decrypt_init - Initialize AES for decryption * @key: Decryption key * @len: Key length in bytes (usually 16, i.e., 128 bits) * Returns: Pointer to context data or %NULL on failure */ void * aes_decrypt_init(const u8 *key, size_t len); /** * aes_decrypt - Decrypt one AES block * @ctx: Context pointer from aes_encrypt_init() * @crypt: Encrypted data (16 bytes) * @plain: Buffer for the decrypted data (16 bytes) * Returns: 0 on success, -1 on failure */ int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); /** * aes_decrypt_deinit - Deinitialize AES decryption * @ctx: Context pointer from aes_encrypt_init() */ void aes_decrypt_deinit(void *ctx); /** * struct asr_bignum - bignum * * Internal data structure for bignum implementation. The contents is specific * to the used crypto library. */ struct asr_bignum; /** * asr_bignum_init - Allocate memory for bignum * Returns: Pointer to allocated bignum or %NULL on failure */ struct asr_bignum * asr_bignum_init(void); /** * asr_bignum_init_set - Allocate memory for bignum and set the value * @buf: Buffer with unsigned binary value * @len: Length of buf in octets * Returns: Pointer to allocated bignum or %NULL on failure */ struct asr_bignum * asr_bignum_init_set(const u8 *buf, size_t len); struct asr_bignum * asr_bignum_init_uint(unsigned int val); /** * asr_bignum_deinit - Free bignum * @n: Bignum from asr_bignum_init() or asr_bignum_init_set() * @clear: Whether to clear the value from memory */ void asr_bignum_deinit(struct asr_bignum *n, int clear); /** * asr_bignum_to_bin - Set binary buffer to unsigned bignum * @a: Bignum * @buf: Buffer for the binary number * @len: Length of @buf in octets * @padlen: Length in octets to pad the result to or 0 to indicate no padding * Returns: Number of octets written on success, -1 on failure */ int asr_bignum_to_bin(const struct asr_bignum *a, uint8_t *buf, size_t buflen, size_t padlen); /** * asr_bignum_rand - Create a random number in range of modulus * @r: Bignum; set to a random value * @m: Bignum; modulus * Returns: 0 on success, -1 on failure */ int asr_bignum_rand(struct asr_bignum *r, const struct asr_bignum *m); /** * asr_bignum_add - c = a + b * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a + b * Returns: 0 on success, -1 on failure */ int asr_bignum_add(const struct asr_bignum *a, const struct asr_bignum *b, struct asr_bignum *c); /** * asr_bignum_mod - c = a % b * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a % b * Returns: 0 on success, -1 on failure */ int asr_bignum_mod(const struct asr_bignum *a, const struct asr_bignum *b, struct asr_bignum *c); /** * asr_bignum_exptmod - Modular exponentiation: x = a^e (mod n) * @a: Bignum; base * @e: Bignum; exponent * @n: Bignum; modulus * @x: Bignum; used to store the result of a^e (mod n) * Returns: 0 on success, -1 on failure */ int asr_bignum_exptmod(const struct asr_bignum *a, const struct asr_bignum *e, const struct asr_bignum *n, struct asr_bignum *x); /** * asr_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result * Returns: 0 on success, -1 on failure */ int asr_bignum_inverse(const struct asr_bignum *a, const struct asr_bignum *b, struct asr_bignum *c); /** * asr_bignum_sub - c = a - b * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a - b * Returns: 0 on success, -1 on failure */ int asr_bignum_sub(const struct asr_bignum *a, const struct asr_bignum *b, struct asr_bignum *c); /** * asr_bignum_div - c = a / b * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a / b * Returns: 0 on success, -1 on failure */ int asr_bignum_div(const struct asr_bignum *a, const struct asr_bignum *b, struct asr_bignum *c); int asr_bignum_addmod(const struct asr_bignum *a, const struct asr_bignum *b, const struct asr_bignum *c, struct asr_bignum *d); /** * asr_bignum_mulmod - d = a * b (mod c) * @a: Bignum * @b: Bignum * @c: Bignum * @d: Bignum; used to store the result of (a * b) % c * Returns: 0 on success, -1 on failure */ int asr_bignum_mulmod(const struct asr_bignum *a, const struct asr_bignum *b, const struct asr_bignum *c, struct asr_bignum *d); int asr_bignum_sqrmod(const struct asr_bignum *a, const struct asr_bignum *b, struct asr_bignum *c); /** * asr_bignum_rshift - r = a >> n * @a: Bignum * @n: Number of bits * @r: Bignum; used to store the result of a >> n * Returns: 0 on success, -1 on failure */ int asr_bignum_rshift(const struct asr_bignum *a, int n, struct asr_bignum *r); /** * asr_bignum_cmp - Compare two bignums * @a: Bignum * @b: Bignum * Returns: -1 if a < b, 0 if a == b, or 1 if a > b */ int asr_bignum_cmp(const struct asr_bignum *a, const struct asr_bignum *b); /** * asr_bignum_is_zero - Is the given bignum zero * @a: Bignum * Returns: 1 if @a is zero or 0 if not */ int asr_bignum_is_zero(const struct asr_bignum *a); /** * asr_bignum_is_one - Is the given bignum one * @a: Bignum * Returns: 1 if @a is one or 0 if not */ int asr_bignum_is_one(const struct asr_bignum *a); /** * asr_bignum_is_odd - Is the given bignum odd * @a: Bignum * Returns: 1 if @a is odd or 0 if not */ int asr_bignum_is_odd(const struct asr_bignum *a); /** * asr_bignum_legendre - Compute the Legendre symbol (a/p) * @a: Bignum * @p: Bignum * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure */ int asr_bignum_legendre(const struct asr_bignum *a, const struct asr_bignum *p); /** * struct asr_ec - Elliptic curve context * * Internal data structure for EC implementation. The contents is specific * to the used crypto library. */ struct asr_ec; /** * asr_ec_init - Initialize elliptic curve context * @group: Identifying number for the ECC group (IANA "Group Description" * attribute registrty for RFC 2409) * Returns: Pointer to EC context or %NULL on failure */ struct asr_ec * asr_ec_init(int group); /** * asr_ec_deinit - Deinitialize elliptic curve context * @e: EC context from asr_ec_init() */ void asr_ec_deinit(struct asr_ec *e); /** * asr_ec_prime_len - Get length of the prime in octets * @e: EC context from asr_ec_init() * Returns: Length of the prime defining the group */ size_t asr_ec_prime_len(struct asr_ec *e); /** * asr_ec_prime_len_bits - Get length of the prime in bits * @e: EC context from asr_ec_init() * Returns: Length of the prime defining the group in bits */ size_t asr_ec_prime_len_bits(struct asr_ec *e); /** * asr_ec_order_len - Get length of the order in octets * @e: EC context from asr_ec_init() * Returns: Length of the order defining the group */ size_t asr_ec_order_len(struct asr_ec *e); /** * asr_ec_get_prime - Get prime defining an EC group * @e: EC context from asr_ec_init() * Returns: Prime (bignum) defining the group */ const struct asr_bignum * asr_ec_get_prime(struct asr_ec *e); /** * asr_ec_get_order - Get order of an EC group * @e: EC context from asr_ec_init() * Returns: Order (bignum) of the group */ const struct asr_bignum * asr_ec_get_order(struct asr_ec *e); const struct asr_bignum * asr_ec_get_a(struct asr_ec *e); const struct asr_bignum * asr_ec_get_b(struct asr_ec *e); /** * struct asr_ec_point - Elliptic curve point * * Internal data structure for EC implementation to represent a point. The * contents is specific to the used crypto library. */ struct asr_ec_point; /** * asr_ec_point_init - Initialize data for an EC point * @e: EC context from asr_ec_init() * Returns: Pointer to EC point data or %NULL on failure */ struct asr_ec_point * asr_ec_point_init(struct asr_ec *e); /** * asr_ec_point_deinit - Deinitialize EC point data * @p: EC point data from asr_ec_point_init() * @clear: Whether to clear the EC point value from memory */ void asr_ec_point_deinit(struct asr_ec_point *p, int clear); /** * asr_ec_point_x - Copies the x-ordinate point into big number * @e: EC context from asr_ec_init() * @p: EC point data * @x: Big number to set to the copy of x-ordinate * Returns: 0 on success, -1 on failure */ int asr_ec_point_x(struct asr_ec *e, const struct asr_ec_point *p, struct asr_bignum *x); /** * asr_ec_point_to_bin - Write EC point value as binary data * @e: EC context from asr_ec_init() * @p: EC point data from asr_ec_point_init() * @x: Buffer for writing the binary data for x coordinate or %NULL if not used * @y: Buffer for writing the binary data for y coordinate or %NULL if not used * Returns: 0 on success, -1 on failure * * This function can be used to write an EC point as binary data in a format * that has the x and y coordinates in big endian byte order fields padded to * the length of the prime defining the group. */ int asr_ec_point_to_bin(struct asr_ec *e, const struct asr_ec_point *point, u8 *x, u8 *y); /** * asr_ec_point_from_bin - Create EC point from binary data * @e: EC context from asr_ec_init() * @val: Binary data to read the EC point from * Returns: Pointer to EC point data or %NULL on failure * * This function readers x and y coordinates of the EC point from the provided * buffer assuming the values are in big endian byte order with fields padded to * the length of the prime defining the group. */ struct asr_ec_point * asr_ec_point_from_bin(struct asr_ec *e, const u8 *val); /** * asr_ec_point_add - c = a + b * @e: EC context from asr_ec_init() * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a + b * Returns: 0 on success, -1 on failure */ int asr_ec_point_add(struct asr_ec *e, const struct asr_ec_point *a, const struct asr_ec_point *b, struct asr_ec_point *c); /** * asr_ec_point_mul - res = b * p * @e: EC context from asr_ec_init() * @p: EC point * @b: Bignum * @res: EC point; used to store the result of b * p * Returns: 0 on success, -1 on failure */ int asr_ec_point_mul(struct asr_ec *e, const struct asr_ec_point *p, const struct asr_bignum *b, struct asr_ec_point *res); /** * asr_ec_point_invert - Compute inverse of an EC point * @e: EC context from asr_ec_init() * @p: EC point to invert (and result of the operation) * Returns: 0 on success, -1 on failure */ int asr_ec_point_invert(struct asr_ec *e, struct asr_ec_point *p); /** * asr_ec_point_solve_y_coord - Solve y coordinate for an x coordinate * @e: EC context from asr_ec_init() * @p: EC point to use for the returning the result * @x: x coordinate * @y_bit: y-bit (0 or 1) for selecting the y value to use * Returns: 0 on success, -1 on failure */ int asr_ec_point_solve_y_coord(struct asr_ec *e, struct asr_ec_point *p, const struct asr_bignum *x, int y_bit); /** * asr_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b * @e: EC context from asr_ec_init() * @x: x coordinate * Returns: y^2 on success, %NULL failure */ struct asr_bignum * asr_ec_point_compute_y_sqr(struct asr_ec *e, const struct asr_bignum *x); /** * asr_ec_point_is_at_infinity - Check whether EC point is neutral element * @e: EC context from asr_ec_init() * @p: EC point * Returns: 1 if the specified EC point is the neutral element of the group or * 0 if not */ int asr_ec_point_is_at_infinity(struct asr_ec *e, const struct asr_ec_point *p); /** * asr_ec_point_is_on_curve - Check whether EC point is on curve * @e: EC context from asr_ec_init() * @p: EC point * Returns: 1 if the specified EC point is on the curve or 0 if not */ int asr_ec_point_is_on_curve(struct asr_ec *e, const struct asr_ec_point *p); /** * asr_ec_point_cmp - Compare two EC points * @e: EC context from asr_ec_init() * @a: EC point * @b: EC point * Returns: 0 on equal, non-zero otherwise */ int asr_ec_point_cmp(const struct asr_ec *e, const struct asr_ec_point *a, const struct asr_ec_point *b); int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); int asr_hmac_sha1(const u8 *data, size_t data_len, const u8 *key, size_t key_len, u8 *mac); int asr_hmac_md5(const u8 *data, size_t data_len, const u8 *key, size_t key_len, u8 *mac); void asr_aes_wrap(uint8_t * plain, int32_t plain_len, uint8_t * iv, int32_t iv_len, uint8_t * kek, int32_t kek_len, uint8_t *cipher, uint16_t *cipher_len); void asr_aes_unwrap(uint8_t * cipher, int32_t cipher_len, uint8_t * kek, int32_t kek_len, uint8_t * plain); #endif /* ASR_CRYPTO_H */