/* * SHA-256 hash implementation and interface functions * Copyright (c) 2003-2012, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "atbm_hal.h" /** * atbmwifi_hmac_sha256_vector - HMAC-SHA256 over data vector (RFC 2104) * @key: Key for HMAC operations * @key_len: Length of the key in bytes * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash (32 bytes) * Returns: 0 on success, -1 on failure */ int atbmwifi_hmac_sha256_vector(const atbm_uint8 *key, atbm_size_t key_len, atbm_size_t num_elem, const atbm_uint8 *addr[], const atbm_size_t *len, atbm_uint8 *mac) { atbm_uint8 k_pad[64]; /* padding - key XORd with ipad/opad */ atbm_uint8 tk[32]; const atbm_uint8 *_addr[6]; atbm_size_t _len[6], i; if (num_elem > 5) { /* * Fixed limit on the number of fragments to avoid having to * allocate memory (which could fail). */ return -1; } /* if key is longer than 64 bytes reset it to key = SHA256(key) */ if (key_len > 64) { if (atbmwifi_sha256_vector(1, &key, &key_len, tk) < 0) return -1; key = tk; key_len = 32; } /* the HMAC_SHA256 transform looks like: * * SHA256(K XOR opad, SHA256(K XOR ipad, text)) * * where K is an n byte key * ipad is the byte 0x36 repeated 64 times * opad is the byte 0x5c repeated 64 times * and text is the data being protected */ /* start out by storing key in ipad */ atbm_memset(k_pad, 0, sizeof(k_pad)); atbm_memcpy(k_pad, key, key_len); /* XOR key with ipad values */ for (i = 0; i < 64; i++) k_pad[i] ^= 0x36; /* perform inner SHA256 */ _addr[0] = k_pad; _len[0] = 64; for (i = 0; i < num_elem; i++) { _addr[i + 1] = addr[i]; _len[i + 1] = len[i]; } if (atbmwifi_sha256_vector(1 + num_elem, _addr, _len, mac) < 0) return -1; atbm_memset(k_pad, 0, sizeof(k_pad)); atbm_memcpy(k_pad, key, key_len); /* XOR key with opad values */ for (i = 0; i < 64; i++) k_pad[i] ^= 0x5c; /* perform outer SHA256 */ _addr[0] = k_pad; _len[0] = 64; _addr[1] = mac; _len[1] = SHA256_MAC_LEN; return atbmwifi_sha256_vector(2, _addr, _len, mac); } /** * atbmwifi_hmac_sha256 - HMAC-SHA256 over data buffer (RFC 2104) * @key: Key for HMAC operations * @key_len: Length of the key in bytes * @data: Pointers to the data area * @data_len: Length of the data area * @mac: Buffer for the hash (32 bytes) * Returns: 0 on success, -1 on failure */ int atbmwifi_hmac_sha256(const atbm_uint8 *key, atbm_size_t key_len, const atbm_uint8 *data, atbm_size_t data_len, atbm_uint8 *mac) { return atbmwifi_hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); } /** * sha256_prf - SHA256-based Pseudo-Random Function (IEEE 802.11r, 8.5.1.5.2) * @key: Key for PRF * @key_len: Length of the key in bytes * @label: A unique label for each purpose of the PRF * @data: Extra data to bind into the key * @data_len: Length of the data * @buf: Buffer for the generated pseudo-random key * @buf_len: Number of bytes of key to generate * Returns: 0 on success, -1 on failure * * This function is used to derive new, cryptographically separate keys from a * given key. */ int atbmwifi_sha256_prf(const atbm_uint8 *key, atbm_size_t key_len, const char *label, const atbm_uint8 *data, atbm_size_t data_len, atbm_uint8 *buf, atbm_size_t buf_len) { return atbmwifi_sha256_prf_bits(key, key_len, label, data, data_len, buf, buf_len * 8); } /** * sha256_prf_bits - IEEE Std 802.11-2012, 11.6.1.7.2 Key derivation function * @key: Key for KDF * @key_len: Length of the key in bytes * @label: A unique label for each purpose of the PRF * @data: Extra data to bind into the key * @data_len: Length of the data * @buf: Buffer for the generated pseudo-random key * @buf_len: Number of bits of key to generate * Returns: 0 on success, -1 on failure * * This function is used to derive new, cryptographically separate keys from a * given key. If the requested buf_len is not divisible by eight, the least * significant 1-7 bits of the last octet in the output are not part of the * requested output. */ int atbmwifi_sha256_prf_bits(const atbm_uint8 *key, atbm_size_t key_len, const char *label, const atbm_uint8 *data, atbm_size_t data_len, atbm_uint8 *buf, atbm_size_t buf_len_bits) { atbm_uint16 counter = 1; atbm_size_t pos, plen; atbm_uint8 hash[SHA256_MAC_LEN]; const atbm_uint8 *addr[4]; atbm_size_t len[4]; atbm_uint8 counter_le[2], length_le[2]; atbm_size_t buf_len = (buf_len_bits + 7) / 8; addr[0] = counter_le; len[0] = 2; addr[1] = (atbm_uint8 *) label; len[1] = strlen(label); addr[2] = data; len[2] = data_len; addr[3] = length_le; len[3] = sizeof(length_le); ATBM_WPA_PUT_LE16(length_le, buf_len_bits); pos = 0; while (pos < buf_len) { plen = buf_len - pos; ATBM_WPA_PUT_LE16(counter_le, counter); if (plen >= SHA256_MAC_LEN) { if (atbmwifi_hmac_sha256_vector(key, key_len, 4, addr, len, &buf[pos]) < 0) return -1; pos += SHA256_MAC_LEN; } else { if (atbmwifi_hmac_sha256_vector(key, key_len, 4, addr, len, hash) < 0) return -1; atbm_memcpy(&buf[pos], hash, plen); pos += plen; break; } counter++; } /* * Mask out unused bits in the last octet if it does not use all the * bits. */ if (buf_len_bits % 8) { atbm_uint8 mask = 0xff << (8 - buf_len_bits % 8); buf[pos - 1] &= mask; } atbm_memset(hash, 0, sizeof(hash)); return 0; }