/************************************************************************************************************** * altobeam RTOS WSM host interface (HI) implementation * * Copyright (c) 2018, altobeam.inc All rights reserved. * * The source code contains proprietary information of AltoBeam, and shall not be distributed, * copied, reproduced, or disclosed in whole or in part without prior written permission of AltoBeam. *****************************************************************************************************************/ #include "atbm_hal.h" #include "atbm_sha1.h" //#include "defs.h" //#include "api.h" int atbmwifi_sha1_vector(atbm_size_t num_elem, const atbm_uint8 *addr[], const atbm_size_t *len, atbm_uint8 *mac); #define REGISTER_ID ((char*)REGISTER_ID_ADDR) atbm_void SHA1Init(SHA1_CTX* context) { /* SHA1 initialization constants */ context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } atbm_void SHA1Transform(atbm_uint32 state[5], const unsigned char buffer[64]) { atbm_uint32 a, b, c, d, e; typedef union { unsigned char c[64]; atbm_uint32 l[16]; } CHAR64LONG16; CHAR64LONG16* block; #ifdef SHA1HANDSOFF CHAR64LONG16 workspace; block = &workspace; atbm_memcpy(block, buffer, 64); #else block = (CHAR64LONG16 *) buffer; #endif /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Wipe variables */ a = b = c = d = e = 0; #ifdef SHA1HANDSOFF atbm_memset(block, 0, 64); #endif } atbm_void SHA1Update(SHA1_CTX* context, const atbm_void *_data, atbm_uint32 len) { atbm_uint32 i, j; const unsigned char *data = (const unsigned char *)_data; j = (context->count[0] >> 3) & 63; if ((context->count[0] += len << 3) < (len << 3)) context->count[1]++; context->count[1] += (len >> 29); if ((j + len) > 63) { atbm_memcpy(&context->buffer[j], data, (i = 64-j)); SHA1Transform(context->state, context->buffer); for ( ; i + 63 < len; i += 64) { SHA1Transform(context->state, &data[i]); } j = 0; } else i = 0; atbm_memcpy(&context->buffer[j], &data[i], len - i); } atbm_void SHA1Final(unsigned char digest[20], SHA1_CTX* context) { atbm_uint32 i; unsigned char finalcount[8]; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char) ((context->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } SHA1Update(context, (unsigned char *) "\200", 1); while ((context->count[0] & 504) != 448) { SHA1Update(context, (unsigned char *) "\0", 1); } SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ for (i = 0; i < 20; i++) { digest[i] = (unsigned char) ((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); } /* Wipe variables */ i = 0; atbm_memset(context->buffer, 0, 64); atbm_memset(context->state, 0, 20); atbm_memset(context->count, 0, 8); atbm_memset(finalcount, 0, 8); } /* int atbmwifi_sha1_vector(atbm_size_t num_elem, const atbm_uint8 *addr[], const atbm_size_t *len, atbm_uint8 *mac) { SHA1_CTX ctx; atbm_size_t i; SHA1Init(&ctx); for (i = 0; i < num_elem; i++) SHA1Update(&ctx, addr[i], len[i]); SHA1Final(mac, &ctx); return 0; }*/ int atbmwifi_hmac_sha1_vector(const atbm_uint8 *key, atbm_size_t key_len, atbm_size_t num_elem, const atbm_uint8 *addr[], const atbm_size_t *len, atbm_uint8 *mac) { unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */ unsigned char tk[20]; const atbm_uint8 *_addr[6]; atbm_size_t _len[6], i; int ret; // wifi_printk(WIFI_DBG_INIT,"atbmwifi_hmac_sha1_vector\n"); if (num_elem > 5) { /* * Fixed limit on the number of fragments to avoid having to * allocate memory (which could fail). */ return -1; } /* if key is longer than 64 bytes reset it to key = SHA1(key) */ if (key_len > 64) { if (atbmwifi_sha1_vector(1, &key, &key_len, tk)) return -1; key = tk; key_len = 20; } /* the HMAC_SHA1 transform looks like: * * SHA1(K XOR opad, SHA1(K XOR ipad, text)) * * where K is an n byte key * ipad is the byte 0x36 repeated 64 times * opad is the byte 0x5c repeated 64 times * and text is the data being protected */ /* start out by storing key in ipad */ atbm_memset(k_pad, 0, sizeof(k_pad)); atbm_memcpy(k_pad, key, key_len); /* XOR key with ipad values */ for (i = 0; i < 64; i++) k_pad[i] ^= 0x36; /* perform inner SHA1 */ _addr[0] = k_pad; _len[0] = 64; for (i = 0; i < num_elem; i++) { _addr[i + 1] = addr[i]; _len[i + 1] = len[i]; } if (atbmwifi_sha1_vector(1 + num_elem, _addr, _len, mac)) return -1; atbm_memset(k_pad, 0, sizeof(k_pad)); atbm_memcpy(k_pad, key, key_len); /* XOR key with opad values */ for (i = 0; i < 64; i++) k_pad[i] ^= 0x5c; /* perform outer SHA1 */ _addr[0] = k_pad; _len[0] = 64; _addr[1] = mac; _len[1] = SHA1_MAC_LEN; ret = atbmwifi_sha1_vector(2, _addr, _len, mac); return ret; } int atbm_hmac_sha1(const atbm_uint8 *key, atbm_size_t key_len, const atbm_uint8 *data, atbm_size_t data_len, atbm_uint8 *mac) { return atbmwifi_hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); } int atbm_sha1_prf(const atbm_uint8 *key, atbm_size_t key_len, const char *label, const atbm_uint8 *data, atbm_size_t data_len, atbm_uint8 *buf, atbm_size_t buf_len) { atbm_uint8 counter = 0; atbm_size_t pos, plen; atbm_uint8 hash[SHA1_MAC_LEN]; atbm_size_t label_len = strlen(label) + 1; const unsigned char *addr[3]; atbm_size_t len[3]; addr[0] = (atbm_uint8 *) label; len[0] = label_len; addr[1] = data; len[1] = data_len; addr[2] = &counter; len[2] = 1; pos = 0; while (pos < buf_len) { plen = buf_len - pos; if (plen >= SHA1_MAC_LEN) { if (atbmwifi_hmac_sha1_vector(key, key_len, 3, addr, len, &buf[pos])) return -1; pos += SHA1_MAC_LEN; } else { if (atbmwifi_hmac_sha1_vector(key, key_len, 3, addr, len, hash)) return -1; atbm_memcpy(&buf[pos], hash, plen); break; } counter++; } return 0; } static int pbkdf2_sha1_f(const char *passphrase, const char *ssid, atbm_size_t ssid_len, int iterations, unsigned int count, atbm_uint8 *digest) { unsigned char tmp[SHA1_MAC_LEN], tmp2[SHA1_MAC_LEN]; int i, j; unsigned char count_buf[4]; const atbm_uint8 *addr[2]; atbm_size_t len[2]; atbm_size_t passphrase_len = strlen(passphrase); addr[0] = (atbm_uint8 *) ssid; len[0] = ssid_len; addr[1] = count_buf; len[1] = 4; /* F(P, S, c, i) = U1 xor U2 xor ... Uc * U1 = PRF(P, S || i) * U2 = PRF(P, U1) * Uc = PRF(P, Uc-1) */ // wifi_printk(WIFI_DBG_INIT,"pbkdf2_sha1_f)\n"); count_buf[0] = (count >> 24) & 0xff; count_buf[1] = (count >> 16) & 0xff; count_buf[2] = (count >> 8) & 0xff; count_buf[3] = count & 0xff; if (atbmwifi_hmac_sha1_vector((atbm_uint8 *) passphrase, passphrase_len, 2, addr, len, tmp)) return -1; atbm_memcpy(digest, tmp, SHA1_MAC_LEN); for (i = 1; i < iterations; i++) { if (atbm_hmac_sha1((atbm_uint8 *) passphrase, passphrase_len, tmp, SHA1_MAC_LEN, tmp2)) return -1; atbm_memcpy(tmp, tmp2, SHA1_MAC_LEN); for (j = 0; j < SHA1_MAC_LEN; j++) digest[j] ^= tmp2[j]; } return 0; } atbm_void atbmwifi_sha1_starts( sha1_context *ctx ) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xC3D2E1F0; } atbm_void atbm_sha1_process( sha1_context *ctx,const atbm_uint8 data[64] ) { atbm_uint32 temp, W[16], A, B, C, D, E; GET_UINT32( W[0], data, 0 ); GET_UINT32( W[1], data, 4 ); GET_UINT32( W[2], data, 8 ); GET_UINT32( W[3], data, 12 ); GET_UINT32( W[4], data, 16 ); GET_UINT32( W[5], data, 20 ); GET_UINT32( W[6], data, 24 ); GET_UINT32( W[7], data, 28 ); GET_UINT32( W[8], data, 32 ); GET_UINT32( W[9], data, 36 ); GET_UINT32( W[10], data, 40 ); GET_UINT32( W[11], data, 44 ); GET_UINT32( W[12], data, 48 ); GET_UINT32( W[13], data, 52 ); GET_UINT32( W[14], data, 56 ); GET_UINT32( W[15], data, 60 ); #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n))) #define R(t) \ ( \ temp = W[(t - 3) & 0x0F] ^ W[(t - 8) & 0x0F] ^ \ W[(t - 14) & 0x0F] ^ W[ t & 0x0F], \ ( W[t & 0x0F] = S(temp,1) ) \ ) #define P(a,b,c,d,e,x) \ { \ e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; #define F(x,y,z) (z ^ (x & (y ^ z))) #define K 0x5A827999 P( A, B, C, D, E, W[0] ); P( E, A, B, C, D, W[1] ); P( D, E, A, B, C, W[2] ); P( C, D, E, A, B, W[3] ); P( B, C, D, E, A, W[4] ); P( A, B, C, D, E, W[5] ); P( E, A, B, C, D, W[6] ); P( D, E, A, B, C, W[7] ); P( C, D, E, A, B, W[8] ); P( B, C, D, E, A, W[9] ); P( A, B, C, D, E, W[10] ); P( E, A, B, C, D, W[11] ); P( D, E, A, B, C, W[12] ); P( C, D, E, A, B, W[13] ); P( B, C, D, E, A, W[14] ); P( A, B, C, D, E, W[15] ); P( E, A, B, C, D, R(16) ); P( D, E, A, B, C, R(17) ); P( C, D, E, A, B, R(18) ); P( B, C, D, E, A, R(19) ); #undef K #undef F #define F(x,y,z) (x ^ y ^ z) #define K 0x6ED9EBA1 P( A, B, C, D, E, R(20) ); P( E, A, B, C, D, R(21) ); P( D, E, A, B, C, R(22) ); P( C, D, E, A, B, R(23) ); P( B, C, D, E, A, R(24) ); P( A, B, C, D, E, R(25) ); P( E, A, B, C, D, R(26) ); P( D, E, A, B, C, R(27) ); P( C, D, E, A, B, R(28) ); P( B, C, D, E, A, R(29) ); P( A, B, C, D, E, R(30) ); P( E, A, B, C, D, R(31) ); P( D, E, A, B, C, R(32) ); P( C, D, E, A, B, R(33) ); P( B, C, D, E, A, R(34) ); P( A, B, C, D, E, R(35) ); P( E, A, B, C, D, R(36) ); P( D, E, A, B, C, R(37) ); P( C, D, E, A, B, R(38) ); P( B, C, D, E, A, R(39) ); #undef K #undef F #define F(x,y,z) ((x & y) | (z & (x | y))) #define K 0x8F1BBCDC P( A, B, C, D, E, R(40) ); P( E, A, B, C, D, R(41) ); P( D, E, A, B, C, R(42) ); P( C, D, E, A, B, R(43) ); P( B, C, D, E, A, R(44) ); P( A, B, C, D, E, R(45) ); P( E, A, B, C, D, R(46) ); P( D, E, A, B, C, R(47) ); P( C, D, E, A, B, R(48) ); P( B, C, D, E, A, R(49) ); P( A, B, C, D, E, R(50) ); P( E, A, B, C, D, R(51) ); P( D, E, A, B, C, R(52) ); P( C, D, E, A, B, R(53) ); P( B, C, D, E, A, R(54) ); P( A, B, C, D, E, R(55) ); P( E, A, B, C, D, R(56) ); P( D, E, A, B, C, R(57) ); P( C, D, E, A, B, R(58) ); P( B, C, D, E, A, R(59) ); #undef K #undef F #define F(x,y,z) (x ^ y ^ z) #define K 0xCA62C1D6 P( A, B, C, D, E, R(60) ); P( E, A, B, C, D, R(61) ); P( D, E, A, B, C, R(62) ); P( C, D, E, A, B, R(63) ); P( B, C, D, E, A, R(64) ); P( A, B, C, D, E, R(65) ); P( E, A, B, C, D, R(66) ); P( D, E, A, B, C, R(67) ); P( C, D, E, A, B, R(68) ); P( B, C, D, E, A, R(69) ); P( A, B, C, D, E, R(70) ); P( E, A, B, C, D, R(71) ); P( D, E, A, B, C, R(72) ); P( C, D, E, A, B, R(73) ); P( B, C, D, E, A, R(74) ); P( A, B, C, D, E, R(75) ); P( E, A, B, C, D, R(76) ); P( D, E, A, B, C, R(77) ); P( C, D, E, A, B, R(78) ); P( B, C, D, E, A, R(79) ); #undef K #undef F ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; } atbm_void atbm_sha1_update( sha1_context *ctx,const atbm_uint8 *input, atbm_uint32 length ) { atbm_uint32 left, fill; if( ! length ) return; // wifi_printk(WIFI_DBG_INIT,"atbm_sha1_update\n"); left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += length; ctx->total[0] &= 0xFFFFFFFF; if( ctx->total[0] < length ) ctx->total[1]++; if( left && length >= fill ) { atbm_memcpy( (atbm_void *) (ctx->buffer + left), (atbm_void *) input, fill ); atbm_sha1_process( ctx, ctx->buffer ); length -= fill; input += fill; left = 0; } while( length >= 64 ) { atbm_sha1_process( ctx, input ); length -= 64; input += 64; } if( length ) { atbm_memcpy( (atbm_void *) (ctx->buffer + left), (atbm_void *) input, length ); } } static const atbm_uint8 sha1_padding[64] ={0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; atbm_void atbm_sha1_finish( sha1_context *ctx, atbm_uint8 digest[20] ) { atbm_uint32 last, padn; atbm_uint32 high, low; atbm_uint8 msglen[8]; high = ( ctx->total[0] >> 29 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); PUT_UINT32( high, msglen, 0 ); PUT_UINT32( low, msglen, 4 ); last = ctx->total[0] & 0x3F; padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); atbm_sha1_update( ctx, sha1_padding, padn ); atbm_sha1_update( ctx, msglen, 8 ); PUT_UINT32( ctx->state[0], digest, 0 ); PUT_UINT32( ctx->state[1], digest, 4 ); PUT_UINT32( ctx->state[2], digest, 8 ); PUT_UINT32( ctx->state[3], digest, 12 ); PUT_UINT32( ctx->state[4], digest, 16 ); } int atbmwifi_sha1_vector(atbm_size_t num_elem, const atbm_uint8 *addr[], const atbm_size_t *len, atbm_uint8 *mac) { atbm_size_t i; sha1_context ctx; atbmwifi_sha1_starts(&ctx); // wifi_printk(WIFI_DBG_INIT,"atbmwifi_sha1_vector\n"); for (i = 0; i < num_elem; i++) atbm_sha1_update(&ctx, (unsigned char*)addr[i], len[i]); atbm_sha1_finish(&ctx, mac); // p_hex("openssl_digest_vector:",mac,20); return 0; } const unsigned char PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* F, G, H and I are basic MD5 functions. */ #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | (~z))) /* ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) /* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent recomputation. */ #define FF(a, b, c, d, x, s, ac) { \ (a) += F((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } static atbm_void Encode (unsigned char *output,UINT4 *input,unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (unsigned char)(input[i] & 0xff); output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); } } /* Decodes input (unsigned char) into output (UINT4). Assumes len is a multiple of 4. */ static atbm_void Decode (UINT4 *output,const unsigned char *input,unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); } /* Note: Replace "for loop" with standard atbm_memcpy if possible. */ static atbm_void MD5_memcpy (POINTER output,POINTER input,unsigned int len) { unsigned int i; for (i = 0; i < len; i++) output[i] = input[i]; } /* Note: Replace "for loop" with standard atbm_memset if possible. */ static atbm_void MD5_memset (POINTER output,int value,unsigned int len) { unsigned int i; for (i = 0; i < len; i++) ((char *)output)[i] = (char)value; } #if 1 atbm_void atbm_MD5Init (MD5_CTX *context) /* context */ { context->count[0] = context->count[1] = 0; context->state[0] = 0x67452301; /* Load magic initialization constants.*/ context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; } static atbm_void MD5Transform (UINT4 state[4],const unsigned char block[64]) { UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; Decode (x, block, 64); /* Round 1 */ FF (a, b, c, d, x[ 0], ATBM_S11, 0xd76aa478); /* 1 */ FF (d, a, b, c, x[ 1], ATBM_S12, 0xe8c7b756); /* 2 */ FF (c, d, a, b, x[ 2], ATBM_S13, 0x242070db); /* 3 */ FF (b, c, d, a, x[ 3], ATBM_S14, 0xc1bdceee); /* 4 */ FF (a, b, c, d, x[ 4], ATBM_S11, 0xf57c0faf); /* 5 */ FF (d, a, b, c, x[ 5], ATBM_S12, 0x4787c62a); /* 6 */ FF (c, d, a, b, x[ 6], ATBM_S13, 0xa8304613); /* 7 */ FF (b, c, d, a, x[ 7], ATBM_S14, 0xfd469501); /* 8 */ FF (a, b, c, d, x[ 8], ATBM_S11, 0x698098d8); /* 9 */ FF (d, a, b, c, x[ 9], ATBM_S12, 0x8b44f7af); /* 10 */ FF (c, d, a, b, x[10], ATBM_S13, 0xffff5bb1); /* 11 */ FF (b, c, d, a, x[11], ATBM_S14, 0x895cd7be); /* 12 */ FF (a, b, c, d, x[12], ATBM_S11, 0x6b901122); /* 13 */ FF (d, a, b, c, x[13], ATBM_S12, 0xfd987193); /* 14 */ FF (c, d, a, b, x[14], ATBM_S13, 0xa679438e); /* 15 */ FF (b, c, d, a, x[15], ATBM_S14, 0x49b40821); /* 16 */ /* Round 2 */ GG (a, b, c, d, x[ 1], ATBM_S21, 0xf61e2562); /* 17 */ GG (d, a, b, c, x[ 6], ATBM_S22, 0xc040b340); /* 18 */ GG (c, d, a, b, x[11], ATBM_S23, 0x265e5a51); /* 19 */ GG (b, c, d, a, x[ 0], ATBM_S24, 0xe9b6c7aa); /* 20 */ GG (a, b, c, d, x[ 5], ATBM_S21, 0xd62f105d); /* 21 */ GG (d, a, b, c, x[10], ATBM_S22, 0x2441453); /* 22 */ GG (c, d, a, b, x[15], ATBM_S23, 0xd8a1e681); /* 23 */ GG (b, c, d, a, x[ 4], ATBM_S24, 0xe7d3fbc8); /* 24 */ GG (a, b, c, d, x[ 9], ATBM_S21, 0x21e1cde6); /* 25 */ GG (d, a, b, c, x[14], ATBM_S22, 0xc33707d6); /* 26 */ GG (c, d, a, b, x[ 3], ATBM_S23, 0xf4d50d87); /* 27 */ GG (b, c, d, a, x[ 8], ATBM_S24, 0x455a14ed); /* 28 */ GG (a, b, c, d, x[13], ATBM_S21, 0xa9e3e905); /* 29 */ GG (d, a, b, c, x[ 2], ATBM_S22, 0xfcefa3f8); /* 30 */ GG (c, d, a, b, x[ 7], ATBM_S23, 0x676f02d9); /* 31 */ GG (b, c, d, a, x[12], ATBM_S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ HH (a, b, c, d, x[ 5], ATBM_S31, 0xfffa3942); /* 33 */ HH (d, a, b, c, x[ 8], ATBM_S32, 0x8771f681); /* 34 */ HH (c, d, a, b, x[11], ATBM_S33, 0x6d9d6122); /* 35 */ HH (b, c, d, a, x[14], ATBM_S34, 0xfde5380c); /* 36 */ HH (a, b, c, d, x[ 1], ATBM_S31, 0xa4beea44); /* 37 */ HH (d, a, b, c, x[ 4], ATBM_S32, 0x4bdecfa9); /* 38 */ HH (c, d, a, b, x[ 7], ATBM_S33, 0xf6bb4b60); /* 39 */ HH (b, c, d, a, x[10], ATBM_S34, 0xbebfbc70); /* 40 */ HH (a, b, c, d, x[13], ATBM_S31, 0x289b7ec6); /* 41 */ HH (d, a, b, c, x[ 0], ATBM_S32, 0xeaa127fa); /* 42 */ HH (c, d, a, b, x[ 3], ATBM_S33, 0xd4ef3085); /* 43 */ HH (b, c, d, a, x[ 6], ATBM_S34, 0x4881d05); /* 44 */ HH (a, b, c, d, x[ 9], ATBM_S31, 0xd9d4d039); /* 45 */ HH (d, a, b, c, x[12], ATBM_S32, 0xe6db99e5); /* 46 */ HH (c, d, a, b, x[15], ATBM_S33, 0x1fa27cf8); /* 47 */ HH (b, c, d, a, x[ 2], ATBM_S34, 0xc4ac5665); /* 48 */ /* Round 4 */ II (a, b, c, d, x[ 0], ATBM_S41, 0xf4292244); /* 49 */ II (d, a, b, c, x[ 7], ATBM_S42, 0x432aff97); /* 50 */ II (c, d, a, b, x[14], ATBM_S43, 0xab9423a7); /* 51 */ II (b, c, d, a, x[ 5], ATBM_S44, 0xfc93a039); /* 52 */ II (a, b, c, d, x[12], ATBM_S41, 0x655b59c3); /* 53 */ II (d, a, b, c, x[ 3], ATBM_S42, 0x8f0ccc92); /* 54 */ II (c, d, a, b, x[10], ATBM_S43, 0xffeff47d); /* 55 */ II (b, c, d, a, x[ 1], ATBM_S44, 0x85845dd1); /* 56 */ II (a, b, c, d, x[ 8], ATBM_S41, 0x6fa87e4f); /* 57 */ II (d, a, b, c, x[15], ATBM_S42, 0xfe2ce6e0); /* 58 */ II (c, d, a, b, x[ 6], ATBM_S43, 0xa3014314); /* 59 */ II (b, c, d, a, x[13], ATBM_S44, 0x4e0811a1); /* 60 */ II (a, b, c, d, x[ 4], ATBM_S41, 0xf7537e82); /* 61 */ II (d, a, b, c, x[11], ATBM_S42, 0xbd3af235); /* 62 */ II (c, d, a, b, x[ 2], ATBM_S43, 0x2ad7d2bb); /* 63 */ II (b, c, d, a, x[ 9], ATBM_S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; /* Zeroize sensitive information.*/ MD5_memset ((POINTER)x, 0, sizeof (x)); } atbm_void atbm_MD5Update (MD5_CTX *context, const unsigned char *input,unsigned int inputLen ) { unsigned int i, index, partLen; index = (unsigned int)((context->count[0] >> 3) & 0x3F); /* Compute number of bytes mod 64 */ if ( (context->count[0] += ( (UINT4)inputLen << 3) ) < ( (UINT4)inputLen << 3 ) ) context->count[1]++; context->count[1] += ((UINT4)inputLen >> 29); partLen = 64 - index; /* Transform as many times as possible.*/ if (inputLen >= partLen) { MD5_memcpy( (POINTER)&context->buffer[index], (POINTER)input, partLen); MD5Transform (context->state, context->buffer); for (i = partLen; i + 63 < inputLen; i += 64) MD5Transform (context->state, &input[i]); index = 0; } else i = 0; /* Buffer remaining input */ MD5_memcpy( (POINTER)&context->buffer[index], (POINTER)&input[i],inputLen-i ); } atbm_void atbm_MD5Final (unsigned char digest[16], MD5_CTX *context) /* message digest */ /* context */ { unsigned char bits[8]; unsigned int index, padLen; Encode (bits, context->count, 8); /* Save number of bits */ /* Pad out to 56 mod 64.*/ index = (unsigned int)((context->count[0] >> 3) & 0x3f); padLen = (index < 56) ? (56 - index) : (120 - index); atbm_MD5Update (context,(const unsigned char*) PADDING, padLen); atbm_MD5Update (context, bits, 8); /* Append length (before padding) */ Encode (digest, context->state, 16); /* Store state in digest */ /* Zeroize sensitive information.*/ MD5_memset ((POINTER)context, 0, sizeof (*context)); } #endif int atbm_pbkdf2_sha1(const char *passphrase, const char *ssid, atbm_size_t ssid_len, int iterations, atbm_uint8 *buf, atbm_size_t buflen) { unsigned int count = 0; unsigned char *pos = buf; atbm_size_t left = buflen, plen; unsigned char digest[SHA1_MAC_LEN]; // wifi_printk(WIFI_DBG_INIT,"atbm_pbkdf2_sha1)\n"); while (left > 0) { count++; if (pbkdf2_sha1_f(passphrase, ssid, ssid_len, iterations, count, digest)) return -1; plen = left > SHA1_MAC_LEN ? SHA1_MAC_LEN : left; atbm_memcpy(pos, digest, plen); pos += plen; left -= plen; } return 0; } int atbmwifi_md5_vector(atbm_size_t num_elem, const atbm_uint8 *addr[], const atbm_size_t *len, atbm_uint8 *mac) { MD5_CTX ctx; atbm_size_t i; atbm_MD5Init(&ctx); for (i = 0; i < num_elem; i++) atbm_MD5Update(&ctx, (unsigned char*)addr[i], len[i]); atbm_MD5Final(mac, &ctx); return 0; }