#include "usbh_core.h" #include "usb_musb_reg.h" #define HWREG(x) \ (*((volatile uint32_t *)(x))) #define HWREGH(x) \ (*((volatile uint16_t *)(x))) #define HWREGB(x) \ (*((volatile uint8_t *)(x))) #ifdef CONFIG_USB_MUSB_SUNXI #ifndef USB_BASE #define USB_BASE (0x01c13000) #endif #ifndef USBH_IRQHandler #define USBH_IRQHandler USBH_IRQHandler //use actual usb irq name instead #endif #define MUSB_FADDR_OFFSET 0x98 #define MUSB_POWER_OFFSET 0x40 #define MUSB_TXIS_OFFSET 0x44 #define MUSB_RXIS_OFFSET 0x46 #define MUSB_TXIE_OFFSET 0x48 #define MUSB_RXIE_OFFSET 0x4A #define MUSB_IS_OFFSET 0x4C #define MUSB_IE_OFFSET 0x50 #define MUSB_EPIDX_OFFSET 0x42 #define MUSB_IND_TXMAP_OFFSET 0x80 #define MUSB_IND_TXCSRL_OFFSET 0x82 #define MUSB_IND_TXCSRH_OFFSET 0x83 #define MUSB_IND_RXMAP_OFFSET 0x84 #define MUSB_IND_RXCSRL_OFFSET 0x86 #define MUSB_IND_RXCSRH_OFFSET 0x87 #define MUSB_IND_RXCOUNT_OFFSET 0x88 #define MUSB_IND_TXTYPE_OFFSET 0x8C #define MUSB_IND_TXINTERVAL_OFFSET 0x8D #define MUSB_IND_RXTYPE_OFFSET 0x8E #define MUSB_IND_RXINTERVAL_OFFSET 0x8F #define MUSB_FIFO_OFFSET 0x00 #define MUSB_DEVCTL_OFFSET 0x41 #define MUSB_TXFIFOSZ_OFFSET 0x90 #define MUSB_RXFIFOSZ_OFFSET 0x94 #define MUSB_TXFIFOADD_OFFSET 0x92 #define MUSB_RXFIFOADD_OFFSET 0x96 #define MUSB_TXFUNCADDR0_OFFSET 0x98 #define MUSB_TXHUBADDR0_OFFSET 0x9A #define MUSB_TXHUBPORT0_OFFSET 0x9B #define MUSB_TXFUNCADDRx_OFFSET 0x98 #define MUSB_TXHUBADDRx_OFFSET 0x9A #define MUSB_TXHUBPORTx_OFFSET 0x9B #define MUSB_RXFUNCADDRx_OFFSET 0x9C #define MUSB_RXHUBADDRx_OFFSET 0x9E #define MUSB_RXHUBPORTx_OFFSET 0x9F #define USB_TXADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDRx_OFFSET) #define USB_TXHUBADDR_BASE(ep_idx) (USB_BASE + MUSB_TXHUBADDRx_OFFSET) #define USB_TXHUBPORT_BASE(ep_idx) (USB_BASE + MUSB_TXHUBPORTx_OFFSET) #define USB_RXADDR_BASE(ep_idx) (USB_BASE + MUSB_RXFUNCADDRx_OFFSET) #define USB_RXHUBADDR_BASE(ep_idx) (USB_BASE + MUSB_RXHUBADDRx_OFFSET) #define USB_RXHUBPORT_BASE(ep_idx) (USB_BASE + MUSB_RXHUBPORTx_OFFSET) #elif defined(CONFIG_USB_MUSB_CUSTOM) #else #ifndef USBH_IRQHandler #define USBH_IRQHandler USB_INT_Handler #endif #ifndef USB_BASE #define USB_BASE (0x40086400UL) #endif #define MUSB_FADDR_OFFSET 0x00 #define MUSB_POWER_OFFSET 0x01 #define MUSB_TXIS_OFFSET 0x02 #define MUSB_RXIS_OFFSET 0x04 #define MUSB_TXIE_OFFSET 0x06 #define MUSB_RXIE_OFFSET 0x08 #define MUSB_IS_OFFSET 0x0A #define MUSB_IE_OFFSET 0x0B #define MUSB_EPIDX_OFFSET 0x0E #define MUSB_IND_TXMAP_OFFSET 0x10 #define MUSB_IND_TXCSRL_OFFSET 0x12 #define MUSB_IND_TXCSRH_OFFSET 0x13 #define MUSB_IND_RXMAP_OFFSET 0x14 #define MUSB_IND_RXCSRL_OFFSET 0x16 #define MUSB_IND_RXCSRH_OFFSET 0x17 #define MUSB_IND_RXCOUNT_OFFSET 0x18 #define MUSB_IND_TXTYPE_OFFSET 0x1A #define MUSB_IND_TXINTERVAL_OFFSET 0x1B #define MUSB_IND_RXTYPE_OFFSET 0x1C #define MUSB_IND_RXINTERVAL_OFFSET 0x1D #define MUSB_FIFO_OFFSET 0x20 #define MUSB_DEVCTL_OFFSET 0x60 #define MUSB_TXFIFOSZ_OFFSET 0x62 #define MUSB_RXFIFOSZ_OFFSET 0x63 #define MUSB_TXFIFOADD_OFFSET 0x64 #define MUSB_RXFIFOADD_OFFSET 0x66 #define MUSB_TXFUNCADDR0_OFFSET 0x80 #define MUSB_TXHUBADDR0_OFFSET 0x82 #define MUSB_TXHUBPORT0_OFFSET 0x83 #define MUSB_TXFUNCADDRx_OFFSET 0x88 #define MUSB_TXHUBADDRx_OFFSET 0x8A #define MUSB_TXHUBPORTx_OFFSET 0x8B #define MUSB_RXFUNCADDRx_OFFSET 0x8C #define MUSB_RXHUBADDRx_OFFSET 0x8E #define MUSB_RXHUBPORTx_OFFSET 0x8F #define USB_TXADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx) #define USB_TXHUBADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 2) #define USB_TXHUBPORT_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 3) #define USB_RXADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 4) #define USB_RXHUBADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 6) #define USB_RXHUBPORT_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 7) #endif #define USB_FIFO_BASE(ep_idx) (USB_BASE + MUSB_FIFO_OFFSET + 0x4 * ep_idx) #ifndef CONIFG_USB_MUSB_PIPE_NUM #define CONIFG_USB_MUSB_PIPE_NUM 5 #endif typedef enum { USB_EP0_STATE_SETUP = 0x0, /**< SETUP DATA */ USB_EP0_STATE_IN_DATA, /**< IN DATA */ USB_EP0_STATE_IN_STATUS, /**< IN status*/ USB_EP0_STATE_OUT_DATA, /**< OUT DATA */ USB_EP0_STATE_OUT_STATUS, /**< OUT status */ USB_EP0_STATE_IN_DATA_C, /**< IN status*/ USB_EP0_STATE_IN_STATUS_C, /**< IN DATA */ } ep0_state_t; struct musb_pipe { uint8_t ep_idx; bool enable; /* True: start transfer */ bool in; /* True: IN endpoint */ uint16_t mps; uint8_t interval; /* Polling interval */ uint8_t speed; uint8_t *buffer; volatile uint32_t buflen; volatile uint16_t xfrd; /* Bytes transferred (at end of transfer) */ volatile int result; /* The result of the transfer */ volatile bool waiter; /* True: Thread is waiting for a channel event */ usb_osal_sem_t waitsem; /* Channel wait semaphore */ #ifdef CONFIG_USBHOST_ASYNCH usbh_asynch_callback_t callback; /* Transfer complete callback */ void *arg; /* Argument that accompanies the callback */ #endif struct usbh_hubport *hport; }; struct musb_hcd { struct musb_pipe chan[CONIFG_USB_MUSB_PIPE_NUM][2]; /* Support Bidirectional ep */ usb_osal_mutex_t exclsem[CONIFG_USB_MUSB_PIPE_NUM]; /* Support mutually exclusive access */ } g_musb_hcd; static volatile uint8_t usb_ep0_state = USB_EP0_STATE_SETUP; volatile uint8_t ep0_outlen = 0; /* get current active ep */ static uint8_t musb_get_active_ep(void) { return HWREGB(USB_BASE + MUSB_EPIDX_OFFSET); } /* set the active ep */ static void musb_set_active_ep(uint8_t ep_index) { HWREGB(USB_BASE + MUSB_EPIDX_OFFSET) = ep_index; } static void musb_fifo_flush(uint8_t ep) { uint8_t ep_idx = ep & 0x7f; if (ep_idx == 0) { if ((HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) & (USB_CSRL0_RXRDY | USB_CSRL0_TXRDY)) != 0) HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) |= USB_CSRH0_FLUSH; } else { if (ep & 0x80) { if (HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) & USB_TXCSRL1_TXRDY) HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) |= USB_TXCSRL1_FLUSH; } else { if (HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) & USB_RXCSRL1_RXRDY) HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) |= USB_RXCSRL1_FLUSH; } } } static void musb_write_packet(uint8_t ep_idx, uint8_t *buffer, uint16_t len) { uint32_t *buf32; uint8_t *buf8; uint32_t count32; uint32_t count8; int i; if ((uint32_t)buffer & 0x03) { buf8 = buffer; for (i = 0; i < len; i++) { HWREGB(USB_FIFO_BASE(ep_idx)) = *buf8++; } } else { count32 = len >> 2; count8 = len & 0x03; buf32 = (uint32_t *)buffer; while (count32--) { HWREG(USB_FIFO_BASE(ep_idx)) = *buf32++; } buf8 = (uint8_t *)buf32; while (count8--) { HWREGB(USB_FIFO_BASE(ep_idx)) = *buf8++; } } } static void musb_read_packet(uint8_t ep_idx, uint8_t *buffer, uint16_t len) { uint32_t *buf32; uint8_t *buf8; uint32_t count32; uint32_t count8; int i; if ((uint32_t)buffer & 0x03) { buf8 = buffer; for (i = 0; i < len; i++) { *buf8++ = HWREGB(USB_FIFO_BASE(ep_idx)); } } else { count32 = len >> 2; count8 = len & 0x03; buf32 = (uint32_t *)buffer; while (count32--) { *buf32++ = HWREG(USB_FIFO_BASE(ep_idx)); } buf8 = (uint8_t *)buf32; while (count8--) { *buf8++ = HWREGB(USB_FIFO_BASE(ep_idx)); } } } /**************************************************************************** * Name: musb_pipe_waitsetup * * Description: * Set the request for the transfer complete event well BEFORE enabling * the transfer (as soon as we are absolutely committed to the transfer). * We do this to minimize race conditions. This logic would have to be * expanded if we want to have more than one packet in flight at a time! * * Assumptions: * Called from a normal thread context BEFORE the transfer has been * started. * ****************************************************************************/ static int musb_pipe_waitsetup(struct musb_pipe *chan) { size_t flags; int ret = -ENODEV; flags = usb_osal_enter_critical_section(); /* Is the device still connected? */ if (usbh_get_port_connect_status(0)) { /* Yes.. then set waiter to indicate that we expect to be informed * when either (1) the device is disconnected, or (2) the transfer * completed. */ chan->waiter = true; chan->enable = true; chan->result = -EBUSY; chan->xfrd = 0; #ifdef CONFIG_USBHOST_ASYNCH chan->callback = NULL; chan->arg = NULL; #endif ret = 0; } usb_osal_leave_critical_section(flags); return ret; } /**************************************************************************** * Name: musb_pipe_asynchsetup * * Description: * Set the request for the transfer complete event well BEFORE enabling * the transfer (as soon as we are absolutely committed to the to avoid * transfer). We do this to minimize race conditions. This logic would * have to be expanded if we want to have more than one packet in flight * at a time! * * Assumptions: * Might be called from the level of an interrupt handler * ****************************************************************************/ #ifdef CONFIG_USBHOST_ASYNCH static int musb_pipe_asynchsetup(struct musb_pipe *chan, usbh_asynch_callback_t callback, void *arg) { size_t flags; int ret = -ENODEV; flags = usb_osal_enter_critical_section(); /* Is the device still connected? */ if (usbh_get_port_connect_status(0)) { /* Yes.. then set waiter to indicate that we expect to be informed * when either (1) the device is disconnected, or (2) the transfer * completed. */ chan->waiter = false; chan->enable = true; chan->result = -EBUSY; chan->xfrd = 0; chan->callback = callback; chan->arg = arg; ret = 0; } usb_osal_leave_critical_section(flags); return ret; } #endif /**************************************************************************** * Name: musb_pipe_wait * * Description: * Wait for a transfer on a channel to complete. * * Assumptions: * Called from a normal thread context * ****************************************************************************/ static int musb_pipe_wait(struct musb_pipe *chan, uint32_t timeout) { int ret; /* Loop, testing for an end of transfer condition. The channel 'result' * was set to EBUSY and 'waiter' was set to true before the transfer; * 'waiter' will be set to false and 'result' will be set appropriately * when the transfer is completed. */ if (chan->waiter) { ret = usb_osal_sem_take(chan->waitsem, timeout); if (ret < 0) { return ret; } } /* The transfer is complete and return the result */ ret = chan->result; if (ret < 0) { return ret; } return chan->xfrd; } /**************************************************************************** * Name: musb_pipe_wakeup * * Description: * A channel transfer has completed... wakeup any threads waiting for the * transfer to complete. * * Assumptions: * This function is called from the transfer complete interrupt handler for * the channel. Interrupts are disabled. * ****************************************************************************/ static void musb_pipe_wakeup(struct musb_pipe *chan) { usbh_asynch_callback_t callback; void *arg; int nbytes; chan->enable = false; /* Is the transfer complete? */ if (chan->waiter) { /* Wake'em up! */ chan->waiter = false; usb_osal_sem_give(chan->waitsem); } #ifdef CONFIG_USBHOST_ASYNCH /* No.. is an asynchronous callback expected when the transfer * completes? */ else if (chan->callback) { callback = chan->callback; arg = chan->arg; nbytes = chan->xfrd; chan->callback = NULL; chan->arg = NULL; if (chan->result < 0) { nbytes = chan->result; } callback(arg, nbytes); } #endif } __WEAK void usb_hc_low_level_init(void) { } int usb_hc_sw_init(void) { memset(&g_musb_hcd, 0, sizeof(struct musb_hcd)); for (uint8_t i = 0; i < CONIFG_USB_MUSB_PIPE_NUM; i++) { g_musb_hcd.exclsem[i] = usb_osal_mutex_create(); g_musb_hcd.chan[i][0].waitsem = usb_osal_sem_create(0); g_musb_hcd.chan[i][1].waitsem = usb_osal_sem_create(0); } return 0; } int usb_hc_hw_init(void) { uint8_t regval; uint32_t fifo_offset = 0; usb_hc_low_level_init(); musb_set_active_ep(0); HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = 0; HWREGB(USB_BASE + MUSB_TXFIFOSZ_OFFSET) = USB_TXFIFOSZ_SIZE_64; HWREGH(USB_BASE + MUSB_TXFIFOADD_OFFSET) = 0; HWREGB(USB_BASE + MUSB_RXFIFOSZ_OFFSET) = USB_TXFIFOSZ_SIZE_64; HWREGH(USB_BASE + MUSB_RXFIFOADD_OFFSET) = 0; fifo_offset += 64; for (uint8_t i = 1; i < CONIFG_USB_MUSB_PIPE_NUM; i++) { musb_set_active_ep(i); HWREGB(USB_BASE + MUSB_TXFIFOSZ_OFFSET) = USB_TXFIFOSZ_SIZE_512; HWREGH(USB_BASE + MUSB_TXFIFOADD_OFFSET) = fifo_offset; HWREGB(USB_BASE + MUSB_RXFIFOSZ_OFFSET) = USB_TXFIFOSZ_SIZE_512; HWREGH(USB_BASE + MUSB_RXFIFOADD_OFFSET) = fifo_offset; fifo_offset += 512; } /* Enable USB interrupts */ regval = USB_IE_RESET | USB_IE_CONN | USB_IE_DISCON | USB_IE_RESUME | USB_IE_SUSPND | USB_IE_BABBLE | USB_IE_SESREQ | USB_IE_VBUSERR; HWREGB(USB_BASE + MUSB_IE_OFFSET) = regval; HWREGH(USB_BASE + MUSB_TXIE_OFFSET) = USB_TXIE_EP0; HWREGH(USB_BASE + MUSB_RXIE_OFFSET) = 0; HWREGB(USB_BASE + MUSB_POWER_OFFSET) |= USB_POWER_HSENAB; HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) |= USB_DEVCTL_SESSION; #ifdef CONFIG_USB_MUSB_SUNXI musb_set_active_ep(0); HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_CSRL0_TXRDY; #endif return 0; } bool usbh_get_port_connect_status(const uint8_t port) { if (HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) & USB_DEVCTL_FSDEV) return true; if (HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) & USB_DEVCTL_LSDEV) return true; return false; } int usbh_reset_port(const uint8_t port) { HWREGB(USB_BASE + MUSB_POWER_OFFSET) |= USB_POWER_RESET; usb_osal_msleep(20); HWREGB(USB_BASE + MUSB_POWER_OFFSET) &= ~(USB_POWER_RESET); usb_osal_msleep(20); return 0; } uint8_t usbh_get_port_speed(const uint8_t port) { uint8_t speed; if (HWREGB(USB_BASE + MUSB_POWER_OFFSET) & USB_POWER_HSMODE) speed = USB_SPEED_HIGH; else if (HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) & USB_DEVCTL_FSDEV) speed = USB_SPEED_FULL; else if (HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) & USB_DEVCTL_LSDEV) speed = USB_SPEED_LOW; return speed; } int usbh_ep0_reconfigure(usbh_epinfo_t ep, uint8_t dev_addr, uint8_t ep_mps, uint8_t speed) { int ret; struct musb_pipe *chan = (struct musb_pipe *)ep; ret = usb_osal_mutex_take(g_musb_hcd.exclsem[0]); if (ret < 0) { return ret; } chan->mps = ep_mps; chan->hport->dev_addr = dev_addr; if (speed == USB_SPEED_HIGH) { chan->speed = USB_TYPE0_SPEED_HIGH; } else if (speed == USB_SPEED_FULL) { chan->speed = USB_TYPE0_SPEED_FULL; } else if (speed == USB_SPEED_LOW) { chan->speed = USB_TYPE0_SPEED_LOW; } usb_osal_mutex_give(g_musb_hcd.exclsem[0]); return ret; } int usbh_ep_alloc(usbh_epinfo_t *ep, const struct usbh_endpoint_cfg *ep_cfg) { struct usbh_hubport *hport; struct musb_pipe *chan; uint8_t ep_idx = 0; uint8_t old_ep_index; hport = ep_cfg->hport; ep_idx = ep_cfg->ep_addr & 0x7f; if (ep_idx > CONIFG_USB_MUSB_PIPE_NUM) { return -1; } old_ep_index = musb_get_active_ep(); musb_set_active_ep(ep_idx); if (ep_cfg->ep_addr & 0x80) { chan = &g_musb_hcd.chan[ep_idx][1]; chan->in = true; } else { chan = &g_musb_hcd.chan[ep_idx][0]; chan->in = false; } chan->enable = false; chan->ep_idx = ep_idx; if (ep_cfg->ep_type == USB_ENDPOINT_TYPE_CONTROL) { chan->interval = 0; chan->mps = ep_cfg->ep_mps; chan->hport = hport; *ep = (usbh_epinfo_t)chan; } else { chan->interval = ep_cfg->ep_interval; chan->mps = ep_cfg->ep_mps; if (hport->speed == USB_SPEED_HIGH) { chan->speed = USB_TXTYPE1_SPEED_HIGH; } else if (hport->speed == USB_SPEED_FULL) { chan->speed = USB_TXTYPE1_SPEED_FULL; } else if (hport->speed == USB_SPEED_LOW) { chan->speed = USB_TXTYPE1_SPEED_LOW; } chan->hport = hport; if (chan->in) { HWREGH(USB_BASE + MUSB_RXIE_OFFSET) |= (1 << ep_idx); } else { HWREGH(USB_BASE + MUSB_TXIE_OFFSET) |= (1 << ep_idx); } *ep = (usbh_epinfo_t)chan; } musb_set_active_ep(old_ep_index); return 0; } int usbh_ep_free(usbh_epinfo_t ep) { //struct musb_pipe *chan = (struct musb_pipe *)ep; return 0; } int usbh_control_transfer(usbh_epinfo_t ep, struct usb_setup_packet *setup, uint8_t *buffer) { int ret; uint32_t old_ep_index; struct musb_pipe *chan = (struct musb_pipe *)ep; ret = usb_osal_mutex_take(g_musb_hcd.exclsem[0]); if (ret < 0) { return ret; } ret = musb_pipe_waitsetup(chan); if (ret < 0) { goto errout_with_mutex; } old_ep_index = musb_get_active_ep(); musb_set_active_ep(0); HWREGB(USB_TXADDR_BASE(0)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->speed; if (chan->hport->parent == NULL) { HWREGB(USB_TXHUBADDR_BASE(0)) = 0; HWREGB(USB_TXHUBPORT_BASE(0)) = 0; } else { HWREGB(USB_TXHUBADDR_BASE(0)) = chan->hport->parent->dev_addr; HWREGB(USB_TXHUBPORT_BASE(0)) = chan->hport->parent->index - 1; } musb_write_packet(0, (uint8_t *)setup, 8); ep0_outlen = 8; if (setup->wLength && buffer) { if (setup->bmRequestType & 0x80) { usb_ep0_state = USB_EP0_STATE_IN_DATA; } else { usb_ep0_state = USB_EP0_STATE_OUT_DATA; } chan->buffer = buffer; chan->buflen = setup->wLength; } else { usb_ep0_state = USB_EP0_STATE_IN_STATUS; } HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_CSRL0_TXRDY | USB_CSRL0_SETUP; musb_set_active_ep(old_ep_index); ret = musb_pipe_wait(chan, CONFIG_USBHOST_CONTROL_TRANSFER_TIMEOUT); if (ret < 0) { goto errout_with_mutex; } usb_osal_mutex_give(g_musb_hcd.exclsem[0]); return ret; errout_with_mutex: chan->waiter = false; chan->enable = false; usb_osal_mutex_give(g_musb_hcd.exclsem[0]); return ret; } int usbh_ep_bulk_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, uint32_t timeout) { int ret; uint32_t old_ep_index; struct musb_pipe *chan = (struct musb_pipe *)ep; ret = usb_osal_mutex_take(g_musb_hcd.exclsem[chan->ep_idx]); if (ret < 0) { return ret; } ret = musb_pipe_waitsetup(chan); if (ret < 0) { goto errout_with_mutex; } old_ep_index = musb_get_active_ep(); musb_set_active_ep(chan->ep_idx); if (chan->in) { HWREGB(USB_RXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_RXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_BULK; HWREGB(USB_BASE + MUSB_IND_RXINTERVAL_OFFSET) = chan->interval; if (chan->hport->parent == NULL) { HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = 0; HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = 0; } else { HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr; HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1; } chan->buffer = buffer; chan->buflen = buflen; HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT; } else { HWREGB(USB_TXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_BULK; HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = chan->interval; if (chan->hport->parent == NULL) { HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = 0; HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = 0; } else { HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr; HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1; } chan->buffer = buffer; chan->buflen = buflen; if (buflen > chan->mps) { buflen = chan->mps; } musb_write_packet(chan->ep_idx, chan->buffer, buflen); HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) |= USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY; } musb_set_active_ep(old_ep_index); ret = musb_pipe_wait(chan, timeout); if (ret < 0) { goto errout_with_mutex; } usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]); return ret; errout_with_mutex: chan->waiter = false; chan->enable = false; usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]); return ret; } int usbh_ep_intr_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, uint32_t timeout) { int ret; uint32_t old_ep_index; struct musb_pipe *chan = (struct musb_pipe *)ep; ret = usb_osal_mutex_take(g_musb_hcd.exclsem[chan->ep_idx]); if (ret < 0) { return ret; } ret = musb_pipe_waitsetup(chan); if (ret < 0) { goto errout_with_mutex; } old_ep_index = musb_get_active_ep(); musb_set_active_ep(chan->ep_idx); if (chan->in) { HWREGB(USB_RXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_RXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_INT; HWREGB(USB_BASE + MUSB_IND_RXINTERVAL_OFFSET) = chan->interval; if (chan->hport->parent == NULL) { HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = 0; HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = 0; } else { HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr; HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1; } chan->buffer = buffer; chan->buflen = buflen; HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT; } else { HWREGB(USB_TXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_INT; HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = chan->interval; if (chan->hport->parent == NULL) { HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = 0; HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = 0; } else { HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr; HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1; } chan->buffer = buffer; chan->buflen = buflen; if (buflen > chan->mps) { buflen = chan->mps; } musb_write_packet(chan->ep_idx, chan->buffer, buflen); HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) |= USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY; } musb_set_active_ep(old_ep_index); ret = musb_pipe_wait(chan, timeout); if (ret < 0) { goto errout_with_mutex; } usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]); return ret; errout_with_mutex: chan->waiter = false; chan->enable = false; usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]); return ret; } int usbh_ep_bulk_async_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, usbh_asynch_callback_t callback, void *arg) { int ret; uint32_t old_ep_index; struct musb_pipe *chan = (struct musb_pipe *)ep; if (chan->enable) { return -EINVAL; } ret = usb_osal_mutex_take(g_musb_hcd.exclsem[chan->ep_idx]); if (ret < 0) { return ret; } ret = musb_pipe_asynchsetup(chan, callback, arg); if (ret < 0) { goto errout_with_mutex; } old_ep_index = musb_get_active_ep(); musb_set_active_ep(chan->ep_idx); if (chan->in) { HWREGB(USB_RXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_RXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_BULK; HWREGB(USB_BASE + MUSB_IND_RXINTERVAL_OFFSET) = chan->interval; if (chan->hport->parent == NULL) { HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = 0; HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = 0; } else { HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr; HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1; } chan->buffer = buffer; chan->buflen = buflen; HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT; } else { HWREGB(USB_TXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_BULK; HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = chan->interval; if (chan->hport->parent == NULL) { HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = 0; HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = 0; } else { HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr; HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1; } chan->buffer = buffer; chan->buflen = buflen; if (buflen > chan->mps) { buflen = chan->mps; } musb_write_packet(chan->ep_idx, chan->buffer, buflen); HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) |= USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY; } musb_set_active_ep(old_ep_index); usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]); return ret; errout_with_mutex: chan->enable = false; chan->enable = false; usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]); return ret; } int usbh_ep_intr_async_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, usbh_asynch_callback_t callback, void *arg) { int ret; uint32_t old_ep_index; struct musb_pipe *chan = (struct musb_pipe *)ep; if (chan->enable) { return -EINVAL; } ret = usb_osal_mutex_take(g_musb_hcd.exclsem[chan->ep_idx]); if (ret < 0) { return ret; } ret = musb_pipe_asynchsetup(chan, callback, arg); if (ret < 0) { goto errout_with_mutex; } old_ep_index = musb_get_active_ep(); musb_set_active_ep(chan->ep_idx); if (chan->in) { HWREGB(USB_RXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_RXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_INT; HWREGB(USB_BASE + MUSB_IND_RXINTERVAL_OFFSET) = chan->interval; if (chan->hport->parent == NULL) { HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = 0; HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = 0; } else { HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr; HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1; } chan->buffer = buffer; chan->buflen = buflen; HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT; } else { HWREGB(USB_TXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr; HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_INT; HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = chan->interval; if (chan->hport->parent == NULL) { HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = 0; HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = 0; } else { HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr; HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1; } chan->buffer = buffer; chan->buflen = buflen; if (buflen > chan->mps) { buflen = chan->mps; } musb_write_packet(chan->ep_idx, chan->buffer, buflen); HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) |= USB_TXCSRH1_MODE; HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY; } musb_set_active_ep(old_ep_index); usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]); return ret; errout_with_mutex: chan->enable = false; chan->enable = false; usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]); return ret; } int usb_ep_cancel(usbh_epinfo_t ep) { size_t flags; struct musb_pipe *chan = (struct musb_pipe *)ep; #ifdef CONFIG_USBHOST_ASYNCH usbh_asynch_callback_t callback; void *arg; #endif flags = usb_osal_enter_critical_section(); chan->result = -ESHUTDOWN; #ifdef CONFIG_USBHOST_ASYNCH /* Extract the callback information */ callback = chan->callback; arg = chan->arg; chan->callback = NULL; chan->arg = NULL; chan->xfrd = 0; #endif chan->enable = false; usb_osal_leave_critical_section(flags); /* Is there a thread waiting for this transfer to complete? */ if (chan->waiter) { /* Wake'em up! */ chan->waiter = false; usb_osal_sem_give(chan->waitsem); } #ifdef CONFIG_USBHOST_ASYNCH /* No.. is an asynchronous callback expected when the transfer completes? */ else if (callback) { /* Then perform the callback */ callback(arg, -ESHUTDOWN); } #endif return 0; } void handle_ep0(void) { uint8_t ep0_status; struct musb_pipe *chan; int result = 0; chan = (struct musb_pipe *)&g_musb_hcd.chan[0][0]; musb_set_active_ep(0); ep0_status = HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET); if (ep0_status & USB_CSRL0_STALLED) { HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_CSRL0_STALLED; usb_ep0_state = USB_EP0_STATE_SETUP; result = -EPERM; goto chan_wait; } if (ep0_status & USB_CSRL0_ERROR) { HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_CSRL0_ERROR; musb_fifo_flush(0); usb_ep0_state = USB_EP0_STATE_SETUP; result = -EIO; goto chan_wait; } if (ep0_status & USB_CSRL0_STALL) { HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_CSRL0_STALL; usb_ep0_state = USB_EP0_STATE_SETUP; result = -EPERM; goto chan_wait; } switch (usb_ep0_state) { case USB_EP0_STATE_SETUP: break; case USB_EP0_STATE_IN_DATA: HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_RXCSRL1_REQPKT; usb_ep0_state = USB_EP0_STATE_IN_DATA_C; chan->xfrd += 8; break; case USB_EP0_STATE_IN_DATA_C: if (ep0_status & USB_CSRL0_RXRDY) { uint32_t size = chan->buflen; if (size > chan->mps) { size = chan->mps; } size = MIN(size, HWREGH(USB_BASE + MUSB_IND_RXCOUNT_OFFSET)); musb_read_packet(0, chan->buffer, size); HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_CSRL0_RXRDY; chan->buffer += size; chan->buflen -= size; chan->xfrd += size; if ((size < chan->mps) || (chan->buflen == 0)) { usb_ep0_state = USB_EP0_STATE_OUT_STATUS; HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = (USB_CSRL0_TXRDY | USB_CSRL0_STATUS); } else { HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_RXCSRL1_REQPKT; } } break; case USB_EP0_STATE_OUT_STATUS: usb_ep0_state = USB_EP0_STATE_SETUP; result = 0; goto chan_wait; case USB_EP0_STATE_IN_STATUS_C: if (ep0_status & (USB_CSRL0_RXRDY | USB_CSRL0_STATUS)) { HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~(USB_CSRL0_RXRDY | USB_CSRL0_STATUS); } usb_ep0_state = USB_EP0_STATE_SETUP; result = 0; goto chan_wait; break; case USB_EP0_STATE_IN_STATUS: HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = (USB_CSRL0_REQPKT | USB_CSRL0_STATUS); usb_ep0_state = USB_EP0_STATE_IN_STATUS_C; chan->xfrd += 8; break; case USB_EP0_STATE_OUT_DATA: { uint32_t size = chan->buflen; if (size > chan->mps) { size = chan->mps; } chan->xfrd += ep0_outlen; musb_write_packet(0, chan->buffer, size); chan->buffer += size; chan->buflen -= size; ep0_outlen = size; if (size == chan->mps) { } else { usb_ep0_state = USB_EP0_STATE_IN_STATUS; } HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_CSRL0_TXRDY; } break; } return; chan_wait: if (chan->enable) { chan->result = result; musb_pipe_wakeup(chan); } } void USBH_IRQHandler(void) { uint32_t is; uint32_t txis; uint32_t rxis; uint8_t ep_csrl_status; // uint8_t ep_csrh_status; struct musb_pipe *chan; uint8_t ep_idx; uint8_t old_ep_idx; int result = 0; is = HWREGB(USB_BASE + MUSB_IS_OFFSET); txis = HWREGH(USB_BASE + MUSB_TXIS_OFFSET); rxis = HWREGH(USB_BASE + MUSB_RXIS_OFFSET); HWREGB(USB_BASE + MUSB_IS_OFFSET) = is; old_ep_idx = musb_get_active_ep(); if (is & USB_IS_CONN) { if (usbh_get_port_connect_status(0)) { usbh_event_notify_handler(USBH_EVENT_CONNECTED, 1); } } if (is & USB_IS_DISCON) { if (usbh_get_port_connect_status(0) == false) { for (ep_idx = 0; ep_idx < CONIFG_USB_MUSB_PIPE_NUM; ep_idx++) { for (uint8_t j = 0; j < 2; j++) { chan = &g_musb_hcd.chan[ep_idx][j]; if (chan->waiter) { chan->result = -ENXIO; musb_pipe_wakeup(chan); } } } usbh_event_notify_handler(USBH_EVENT_DISCONNECTED, 1); } } if (is & USB_IS_SOF) { } if (is & USB_IS_RESUME) { } if (is & USB_IS_SUSPEND) { } if (is & USB_IS_VBUSERR) { } if (is & USB_IS_SESREQ) { } if (is & USB_IS_BABBLE) { } txis &= HWREGH(USB_BASE + MUSB_TXIE_OFFSET); /* Handle EP0 interrupt */ if (txis & USB_TXIE_EP0) { txis &= ~USB_TXIE_EP0; HWREGH(USB_BASE + MUSB_TXIS_OFFSET) = USB_TXIE_EP0; handle_ep0(); } for (ep_idx = 1; ep_idx < CONIFG_USB_MUSB_PIPE_NUM; ep_idx++) { if (txis & (1 << ep_idx)) { HWREGH(USB_BASE + MUSB_TXIS_OFFSET) = (1 << ep_idx); chan = &g_musb_hcd.chan[ep_idx][0]; musb_set_active_ep(ep_idx); ep_csrl_status = HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET); if (ep_csrl_status & USB_TXCSRL1_ERROR) { HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_TXCSRL1_ERROR; result = -EIO; goto chan_wait; } else if (ep_csrl_status & USB_TXCSRL1_NAKTO) { HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_TXCSRL1_NAKTO; result = -EBUSY; goto chan_wait; } else if (ep_csrl_status & USB_TXCSRL1_STALL) { HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_TXCSRL1_STALL; result = -EPERM; goto chan_wait; } else { uint32_t size = chan->buflen; if (size > chan->mps) { size = chan->mps; } chan->buffer += size; chan->buflen -= size; chan->xfrd += size; if (chan->buflen == 0) { result = 0; goto chan_wait; } else { musb_write_packet(ep_idx, chan->buffer, size); HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY; } } } } rxis &= HWREGH(USB_BASE + MUSB_RXIE_OFFSET); for (ep_idx = 1; ep_idx < CONIFG_USB_MUSB_PIPE_NUM; ep_idx++) { if (rxis & (1 << ep_idx)) { HWREGH(USB_BASE + MUSB_RXIS_OFFSET) = (1 << ep_idx); // clear isr flag chan = &g_musb_hcd.chan[ep_idx][1]; musb_set_active_ep(ep_idx); ep_csrl_status = HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET); //ep_csrh_status = HWREGB(USB_BASE + MUSB_IND_RXCSRH_OFFSET); // todo:for iso transfer if (ep_csrl_status & USB_RXCSRL1_ERROR) { HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) &= ~USB_RXCSRL1_ERROR; result = -EIO; goto chan_wait; } else if (ep_csrl_status & USB_RXCSRL1_NAKTO) { HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) &= ~USB_RXCSRL1_NAKTO; result = -EBUSY; goto chan_wait; } else if (ep_csrl_status & USB_RXCSRL1_STALL) { HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) &= ~USB_RXCSRL1_STALL; result = -EPERM; goto chan_wait; } else if (ep_csrl_status & USB_RXCSRL1_RXRDY) { uint32_t size = chan->buflen; if (size > chan->mps) { size = chan->mps; } size = MIN(size, HWREGH(USB_BASE + MUSB_IND_RXCOUNT_OFFSET)); musb_read_packet(ep_idx, chan->buffer, size); HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) &= ~USB_RXCSRL1_RXRDY; chan->buffer += size; chan->buflen -= size; chan->xfrd += size; if ((size < chan->mps) || (chan->buflen == 0)) { result = 0; goto chan_wait; } else { HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT; } } } } musb_set_active_ep(old_ep_idx); return; chan_wait: musb_set_active_ep(old_ep_idx); if (chan->enable) { chan->result = result; musb_pipe_wakeup(chan); } }