Files
luban-lite/bsp/artinchip/drv/spinand/spinand_block.c
2024-12-03 11:13:01 +08:00

520 lines
17 KiB
C

/*
* Copyright (c) 2023-2024, ArtInChip Technology Co., Ltd
*
* SPDX-License-Identifier: Apache-2.0
*
* Authors: xuan.wen <xuan.wen@artinchip.com>
*/
#include <string.h>
#include <rtconfig.h>
#include <assert.h>
#include "spinand.h"
#include "spinand_block.h"
#include "spinand_parts.h"
#include <bbt.h>
#ifdef AIC_NFTL_SUPPORT
#include <nftl_api.h>
#endif
#ifdef AIC_NFTL_SUPPORT
rt_size_t rt_spinand_read_nftl(rt_device_t dev, rt_off_t pos, void *buffer,
rt_size_t size)
{
rt_size_t ret;
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
ret = nftl_api_read(part->nftl_handler, pos, size, buffer);
if (ret == 0) {
return size;
} else {
return -1;
}
}
rt_size_t rt_spinand_write_nftl(rt_device_t dev, rt_off_t pos,
const void *buffer, rt_size_t size)
{
rt_size_t ret;
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
ret = nftl_api_write(part->nftl_handler, pos, size, (u8 *)buffer);
if (ret == 0) {
return size;
} else {
return -1;
}
}
rt_err_t rt_spinand_init_nftl(rt_device_t dev)
{
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
part->nftl_handler =
aicos_malloc(MEM_CMA, sizeof(struct nftl_api_handler_t));
//part->nftl_handler = (struct nftl_api_handler_t *)rt_malloc(sizeof(struct nftl_api_handler_t));
if (!part->nftl_handler) {
pr_err(
"Error: no memory for create SPI NAND block device . nftl_handler");
return RT_ERROR;
}
memset(part->nftl_handler, 0, sizeof(struct nftl_api_handler_t));
part->nftl_handler->priv_mtd = (void *)part->mtd_device;
part->nftl_handler->nandt =
aicos_malloc(MEM_CMA, sizeof(struct nftl_api_nand_t));
part->nftl_handler->nandt->page_size = part->mtd_device->page_size;
part->nftl_handler->nandt->oob_size = part->mtd_device->oob_size;
part->nftl_handler->nandt->pages_per_block =
part->mtd_device->pages_per_block;
part->nftl_handler->nandt->block_total = part->mtd_device->block_total;
part->nftl_handler->nandt->block_start = part->mtd_device->block_start;
part->nftl_handler->nandt->block_end = part->mtd_device->block_end;
if (nftl_api_init(part->nftl_handler, dev->device_id)) {
pr_err("[NE]nftl_initialize failed\n");
return RT_ERROR;
}
return RT_EOK;
}
rt_err_t rt_spinand_nftl_close(rt_device_t dev)
{
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
return nftl_api_write_cache(part->nftl_handler, 0xffff);
}
#endif
static u32 spinand_start_page_calculate(rt_device_t dev, rt_off_t pos)
{
struct spinand_blk_device *blk_dev = (struct spinand_blk_device *)dev;
struct rt_mtd_nand_device *mtd_dev = blk_dev->mtd_device;
const u8 SECTORS_PP = mtd_dev->page_size / blk_dev->geometry.bytes_per_sector;
u32 start_page = 0, block, pos_block;
start_page = pos / SECTORS_PP + mtd_dev->block_start * mtd_dev->pages_per_block;
if (!(start_page % mtd_dev->pages_per_block)) {
block = start_page / mtd_dev->pages_per_block;
pos_block = mtd_dev->ops->get_block_status(mtd_dev, block);
pr_debug("block = %d, pos_block = %d\n", block, pos_block);
if (pos_block != 0) {
block += pos_block;
pos += pos_block * mtd_dev->pages_per_block * SECTORS_PP;
start_page = pos / SECTORS_PP + mtd_dev->block_start * mtd_dev->pages_per_block;
}
}
return start_page;
}
static void spinand_nonftl_cache_write(struct spinand_blk_device *blk_dev, void *copybuf, u32 copy_cnt, rt_off_t pos)
{
u32 cache_cnt = 0;
u32 cur_pos = pos;
pr_debug(" copy_cnt = %d", copy_cnt);
copy_cnt = copy_cnt > BLOCK_CACHE_NUM ? BLOCK_CACHE_NUM : copy_cnt;
for (cache_cnt = 0; cache_cnt < copy_cnt; cache_cnt++) {
pr_debug(" blk_cache[%d].pos: %d", cache_cnt, cur_pos);
rt_memcpy(blk_dev->blk_cache[cache_cnt].buf, copybuf, BLOCK_CACHE_SIZE);
blk_dev->blk_cache[cache_cnt].pos = cur_pos++;
copybuf += BLOCK_CACHE_SIZE;
}
}
static rt_size_t spinand_nonftl_cache_read(struct spinand_blk_device *blk_dev, rt_off_t *pos, void *buffer, rt_size_t size)
{
rt_size_t sectors_read = 0;
u32 cnt = 0;
for (cnt = 0; cnt < BLOCK_CACHE_NUM; cnt++) {
if (blk_dev->blk_cache[cnt].pos == *pos) {
break;
}
}
if (cnt == BLOCK_CACHE_NUM)
return 0;
while (cnt < BLOCK_CACHE_NUM) {
if (blk_dev->blk_cache[cnt].pos == *pos) {
pr_debug(" copy[%d] pos = %d", cnt, *pos);
rt_memcpy(buffer, blk_dev->blk_cache[cnt].buf, BLOCK_CACHE_SIZE);
cnt++;
*pos += 1;
sectors_read++;
buffer += BLOCK_CACHE_SIZE;
if (sectors_read == size)
return size;
} else {
break;
}
}
return sectors_read;
}
static rt_size_t spinand_read_nonftl_nalign(rt_device_t dev, rt_off_t *pos, void *buffer, rt_size_t size)
{
struct spinand_blk_device *blk_dev = (struct spinand_blk_device *)dev;
struct rt_mtd_nand_device *mtd_dev = blk_dev->mtd_device;
const u8 SECTORS_PP = mtd_dev->page_size / blk_dev->geometry.bytes_per_sector;
const u32 POS_SECTOR_OFFS = (*pos) % SECTORS_PP;
rt_size_t copysize = 0, sectors_read = 0;
u32 start_page = 0;
u8 *copybuf = NULL;
int ret = 0;
start_page = spinand_start_page_calculate(dev, *pos);
memset(blk_dev->pagebuf, 0xFF, mtd_dev->page_size);
pr_debug("read_page: %d\n", start_page);
ret = mtd_dev->ops->read_page(mtd_dev, start_page, blk_dev->pagebuf,
mtd_dev->page_size, NULL, 0);
if (ret != RT_EOK) {
pr_err("read_page failed!\n");
return -RT_ERROR;
}
copybuf = blk_dev->pagebuf + POS_SECTOR_OFFS * blk_dev->geometry.bytes_per_sector;
if (size > (SECTORS_PP - POS_SECTOR_OFFS))
sectors_read += (SECTORS_PP - POS_SECTOR_OFFS);
else
sectors_read += size;
copysize = sectors_read * blk_dev->geometry.bytes_per_sector;
*pos += sectors_read;
rt_memcpy(buffer, copybuf, copysize);
/* if copy not end align, store the remaining part to cache */
if (size < (SECTORS_PP - POS_SECTOR_OFFS)) {
spinand_nonftl_cache_write(blk_dev, (copybuf + copysize), ((SECTORS_PP - POS_SECTOR_OFFS) - size), *pos);
}
return sectors_read;
}
static rt_size_t spinand_read_nonftl_align(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size, rt_size_t sectors_read)
{
struct spinand_blk_device *blk_dev = (struct spinand_blk_device *)dev;
struct rt_mtd_nand_device *mtd_dev = blk_dev->mtd_device;
const u8 SECTORS_PP = mtd_dev->page_size / blk_dev->geometry.bytes_per_sector;
rt_size_t copysize = 0, copy_sectors = 0;
u32 start_page = 0;
int ret = 0;
start_page = spinand_start_page_calculate(dev, pos);
while (size > sectors_read) {
start_page = spinand_start_page_calculate(dev, pos);
memset(blk_dev->pagebuf, 0xFF, mtd_dev->page_size);
pr_debug("read_page: %d\n", start_page);
ret = mtd_dev->ops->read_page(mtd_dev, start_page, blk_dev->pagebuf,
mtd_dev->page_size, NULL, 0);
if (ret != RT_EOK) {
pr_err("read_page failed!\n");
return -RT_ERROR;
}
if ((size - sectors_read) > SECTORS_PP) {
copysize = SECTORS_PP * blk_dev->geometry.bytes_per_sector;
sectors_read += SECTORS_PP;
pos += SECTORS_PP;
} else {
copy_sectors = (size - sectors_read);
copysize = copy_sectors * blk_dev->geometry.bytes_per_sector;
sectors_read += copy_sectors;
pos += copy_sectors;
}
rt_memcpy(buffer, blk_dev->pagebuf, copysize);
buffer += copysize;
start_page++;
}
/* if copy not end align, store the remaining part to cache */
if (copy_sectors) {
spinand_nonftl_cache_write(blk_dev, (blk_dev->pagebuf + copysize), (SECTORS_PP - copy_sectors), pos);
}
return sectors_read;
}
#ifdef AIC_SPINAND_CONT_READ
// to do: elm filesystem read 1K size once, do not use continuous reading
#define SPINAND_BLK_CONT_READ 0
#if SPINAND_BLK_CONT_READ
static rt_size_t spinand_continuous_read_nonftl(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size, rt_size_t sectors_read)
{
struct spinand_blk_device *blk_dev = (struct spinand_blk_device *)dev;
struct rt_mtd_nand_device *mtd_dev = blk_dev->mtd_device;
const u8 SECTORS_PP = mtd_dev->page_size / blk_dev->geometry.bytes_per_sector;
rt_size_t copysize = 0, read_size = 0;
rt_uint8_t *data_ptr = RT_NULL;
u32 start_page = 0;
int ret = 0;
/* size is less than a pagesize, not use continuous read */
if ((size - sectors_read) > SECTORS_PP)
return sectors_read;
copysize = (size - sectors_read) * blk_dev->geometry.bytes_per_sector;
read_size = copysize > mtd_dev->page_size ? copysize : mtd_dev->page_size;
data_ptr = (rt_uint8_t *)rt_malloc_align(read_size, CACHE_LINE_SIZE);
if (data_ptr == RT_NULL) {
pr_err("data_ptr: no memory\n");
return sectors_read;
}
rt_memset(data_ptr, 0, read_size);
start_page = spinand_start_page_calculate(dev, pos);
ret = mtd_dev->ops->continuous_read(mtd_dev, start_page, data_ptr, read_size);
if (ret != RT_EOK) {
pr_err("continuous_read failed!\n");
goto cont_read_error;
}
rt_memcpy(buffer, data_ptr, copysize);
sectors_read += size - sectors_read;
cont_read_error:
if (data_ptr)
rt_free_align(data_ptr);
return sectors_read;
}
#else
static rt_size_t spinand_continuous_read_nonftl(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size, rt_size_t sectors_read)
{
return sectors_read;
}
#endif
#endif // AIC_SPINAND_CONT_READ
rt_size_t rt_spinand_read_nonftl(rt_device_t dev, rt_off_t pos,
void *buffer, rt_size_t size)
{
struct spinand_blk_device *blk_dev = (struct spinand_blk_device *)dev;
struct rt_mtd_nand_device *mtd_dev = blk_dev->mtd_device;
const u8 SECTORS_PP = mtd_dev->page_size / blk_dev->geometry.bytes_per_sector;
rt_size_t sectors_read = 0;
assert(blk_dev != RT_NULL);
pr_debug("pos = %d, size = %d\n", pos, size);
/* pos is not aligned with page, read unalign part first */
if (pos % SECTORS_PP) {
sectors_read = spinand_nonftl_cache_read(blk_dev, &pos, buffer, size);
if (sectors_read == 0) {
sectors_read = spinand_read_nonftl_nalign(dev, &pos, buffer, size);
}
buffer += sectors_read * blk_dev->geometry.bytes_per_sector;
if (sectors_read == size)
return size;
}
#ifdef AIC_SPINAND_CONT_READ
sectors_read = spinand_continuous_read_nonftl(dev, pos, buffer, size, sectors_read);
if (sectors_read == size)
return size;
#endif
/* pos is aligned with page */
sectors_read = spinand_read_nonftl_align(dev, pos, buffer, size, sectors_read);
if (sectors_read != size) {
pr_err("ERROR: read not compete sectors_read: %d, size: %d.\n", sectors_read, size);
return sectors_read;
}
return size;
}
rt_size_t rt_spinand_write_nonftl(rt_device_t dev, rt_off_t pos,
const void *buffer, rt_size_t size)
{
struct spinand_blk_device *blk_dev = (struct spinand_blk_device *)dev;
pr_err("ERROR: %s write failed, please check!\n", blk_dev->name);
return -RT_ERROR;
}
rt_err_t rt_spinand_init_nonftl(rt_device_t dev)
{
u32 bad_block_pos = 0;
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
struct rt_mtd_nand_device *device = part->mtd_device;
rt_uint32_t block;
assert(part != RT_NULL);
for (block = device->block_start; block < device->block_end; block++) {
if (device->ops->check_block(device, block)) {
pr_err("Find a bad block, block: %u.\n", block);
/* Find next good block. */
do {
bad_block_pos++;
} while (device->ops->check_block(device, block + bad_block_pos));
device->ops->set_block_status(device, block, bad_block_pos, BBT_BLOCK_FACTORY_BAD);
} else {
device->ops->set_block_status(device, block, bad_block_pos, BBT_BLOCK_GOOD);
}
}
return 0;
}
rt_err_t rt_spinand_nonftl_close(rt_device_t dev)
{
return 0;
}
static rt_err_t rt_spinand_init(rt_device_t dev)
{
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
if (part->attr == PART_ATTR_NFTL) {
#ifdef AIC_NFTL_SUPPORT
return rt_spinand_init_nftl(dev);
#else
return rt_spinand_init_nonftl(dev);
#endif
}
return rt_spinand_init_nonftl(dev);
}
static rt_err_t rt_spinand_control(rt_device_t dev, int cmd, void *args)
{
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
assert(part != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME) {
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL) {
return -RT_ERROR;
}
memcpy(geometry, &part->geometry,
sizeof(struct rt_device_blk_geometry));
} else if (cmd == RT_DEVICE_CTRL_BLK_SYNC) {
if (part->attr == PART_ATTR_NFTL) {
#ifdef AIC_NFTL_SUPPORT
nftl_api_write_cache(part->nftl_handler, 0xffff);
#else
pr_warn("Invaild cmd = %d\n", cmd);
#endif
} else {
pr_warn("Invaild cmd = %d\n", cmd);
}
} else {
pr_warn("Invaild cmd = %d\n", cmd);
}
return RT_EOK;
}
static rt_size_t rt_spinand_write(rt_device_t dev, rt_off_t pos,
const void *buffer, rt_size_t size)
{
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
if (part->attr == PART_ATTR_NFTL) {
#ifdef AIC_NFTL_SUPPORT
return rt_spinand_write_nftl(dev, pos, buffer, size);
#else
return rt_spinand_write_nonftl(dev, pos, buffer, size);
#endif
}
return rt_spinand_write_nonftl(dev, pos, buffer, size);
}
static rt_size_t rt_spinand_read(rt_device_t dev, rt_off_t pos, void *buffer,
rt_size_t size)
{
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
if (part->attr == PART_ATTR_NFTL) {
#ifdef AIC_NFTL_SUPPORT
return rt_spinand_read_nftl(dev, pos, buffer, size);
#else
return rt_spinand_read_nonftl(dev, pos, buffer, size);
#endif
}
return rt_spinand_read_nonftl(dev, pos, buffer, size);
}
static rt_err_t rt_spinand_close(rt_device_t dev)
{
struct spinand_blk_device *part = (struct spinand_blk_device *)dev;
if (part->attr == PART_ATTR_NFTL) {
#ifdef AIC_NFTL_SUPPORT
return rt_spinand_nftl_close(dev);
#else
return rt_spinand_nonftl_close(dev);
#endif
}
return rt_spinand_nonftl_close(dev);
}
#ifdef RT_USING_DEVICE_OPS
static struct rt_device_ops blk_dev_ops = {
rt_spinand_init, RT_NULL, rt_spinand_close,
rt_spinand_read, rt_spinand_write, rt_spinand_control
};
#endif
int rt_blk_nand_register_device(const char *name,
struct rt_mtd_nand_device *device)
{
char str[32] = { 0 };
struct spinand_blk_device *blk_dev;
blk_dev = (struct spinand_blk_device *)rt_malloc(
sizeof(struct spinand_blk_device));
if (!blk_dev) {
pr_err("Error: no memory for create SPI NAND block device");
}
rt_memset(blk_dev, 0, sizeof(struct spinand_blk_device));
blk_dev->mtd_device = device;
blk_dev->parent.type = RT_Device_Class_Block;
blk_dev->attr = device->attr;
#ifdef RT_USING_DEVICE_OPS
blk_dev->parent.ops = &blk_dev_ops;
#else
/* register device */
blk_dev->parent.init = rt_spinand_init;
blk_dev->parent.open = NULL;
blk_dev->parent.close = rt_spinand_close;
blk_dev->parent.read = rt_spinand_read;
blk_dev->parent.write = rt_spinand_write;
blk_dev->parent.control = rt_spinand_control;
#endif
blk_dev->geometry.bytes_per_sector = 512;
blk_dev->geometry.block_size = blk_dev->geometry.bytes_per_sector;
blk_dev->geometry.sector_count =
device->block_total * device->pages_per_block * device->page_size /
blk_dev->geometry.bytes_per_sector;
blk_dev->pagebuf =
aicos_malloc_align(0, device->page_size, CACHE_LINE_SIZE);
if (!blk_dev->pagebuf) {
pr_err("malloc buf failed\n");
return -1;
}
rt_sprintf(str, "blk_%s", name);
memset(blk_dev->name, 0, 32);
rt_memcpy(blk_dev->name, str, 32);
/* register the device */
rt_device_register(RT_DEVICE(blk_dev), str,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
return 0;
}