Files
luban-lite/packages/third-party/cherryusb/port/dwc2/usb_hc_dwc2.c
刘可亮 564e22b32f v0.7.5
2023-08-28 09:48:01 +08:00

1375 lines
42 KiB
C

#include "usbh_core.h"
#include "usb_dwc2_reg.h"
#ifndef CONFIG_USBHOST_HIGH_WORKQ
#error "dwc2 host must use high workq"
#endif
#ifndef USBH_IRQHandler
#define USBH_IRQHandler OTG_HS_IRQHandler
#endif
#ifndef USB_BASE
#define USB_BASE (0x40040000UL)
#endif
#ifndef CONFIG_USB_DWC2_PIPE_NUM
#define CONFIG_USB_DWC2_PIPE_NUM 12 /* Number of host channels */
#endif
#define USB_OTG_GLB ((USB_OTG_GlobalTypeDef *)(USB_BASE))
#define USB_OTG_PCGCCTL *(__IO uint32_t *)((uint32_t)USB_BASE + USB_OTG_PCGCCTL_BASE)
#define USB_OTG_HPRT *(__IO uint32_t *)((uint32_t)USB_BASE + USB_OTG_HOST_PORT_BASE)
#define USB_OTG_HOST ((USB_OTG_HostTypeDef *)(USB_BASE + USB_OTG_HOST_BASE))
#define USB_OTG_HC(i) ((USB_OTG_HostChannelTypeDef *)(USB_BASE + USB_OTG_HOST_CHANNEL_BASE + ((i)*USB_OTG_HOST_CHANNEL_SIZE)))
#define USB_OTG_FIFO(i) *(__IO uint32_t *)(USB_BASE + USB_OTG_FIFO_BASE + ((i)*USB_OTG_FIFO_SIZE))
/* This structure retains the state of one host channel. NOTE: Since there
* is only one channel operation active at a time, some of the fields in
* in the structure could be moved in struct stm32_ubhost_s to achieve
* some memory savings.
*/
struct dwc2_pipe {
uint8_t ep_addr;
uint8_t ep_type;
uint16_t ep_mps;
uint8_t speed;
uint8_t dev_addr;
uint8_t data_pid;
uint8_t chidx;
bool inuse; /* True: This channel is "in use" */
uint8_t ep_interval; /* Interrupt/isochronous EP polling interval */
uint16_t num_packets; /* for HCTSIZx*/
uint32_t xferlen; /* for HCTSIZx*/
volatile int result; /* The result of the transfer */
volatile uint32_t xfrd; /* Bytes transferred (at end of transfer) */
volatile bool waiter; /* True: Thread is waiting for a channel event */
usb_osal_sem_t waitsem; /* Channel wait semaphore */
usb_osal_mutex_t exclsem; /* Support mutually exclusive access */
#ifdef CONFIG_USBHOST_ASYNCH
usbh_asynch_callback_t callback; /* Transfer complete callback */
void *arg; /* Argument that accompanies the callback */
#endif
};
struct dwc2_hcd {
volatile bool connected;
struct usb_work work;
struct dwc2_pipe chan[CONFIG_USB_DWC2_PIPE_NUM];
} g_dwc2_hcd;
static inline int dwc2_reset(void)
{
uint32_t count = 0U;
/* Wait for AHB master IDLE state. */
do {
if (++count > 200000U) {
return -1;
}
} while ((USB_OTG_GLB->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0U);
/* Core Soft Reset */
count = 0U;
USB_OTG_GLB->GRSTCTL |= USB_OTG_GRSTCTL_CSRST;
do {
if (++count > 200000U) {
return -1;
}
} while ((USB_OTG_GLB->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST);
return 0;
}
static inline int dwc2_core_init(void)
{
int ret;
#if defined(CONFIG_USB_DWC2_ULPI_PHY)
USB_OTG_GLB->GCCFG &= ~(USB_OTG_GCCFG_PWRDWN);
/* Init The ULPI Interface */
USB_OTG_GLB->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL);
/* Select vbus source */
USB_OTG_GLB->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI);
//USB_OTG_GLB->GUSBCFG |= USB_OTG_GUSBCFG_ULPIEVBUSD;
/* Reset after a PHY select */
ret = dwc2_reset();
#else
/* Select FS Embedded PHY */
USB_OTG_GLB->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL;
/* Reset after a PHY select */
ret = dwc2_reset();
/* Activate the USB Transceiver */
USB_OTG_GLB->GCCFG |= USB_OTG_GCCFG_PWRDWN;
#endif
return ret;
}
static inline void dwc2_set_mode(uint8_t mode)
{
USB_OTG_GLB->GUSBCFG &= ~(USB_OTG_GUSBCFG_FHMOD | USB_OTG_GUSBCFG_FDMOD);
if (mode == USB_OTG_MODE_HOST) {
USB_OTG_GLB->GUSBCFG |= USB_OTG_GUSBCFG_FHMOD;
} else if (mode == USB_OTG_MODE_DEVICE) {
USB_OTG_GLB->GUSBCFG |= USB_OTG_GUSBCFG_FDMOD;
}
}
static inline int dwc2_flush_rxfifo(void)
{
uint32_t count = 0;
USB_OTG_GLB->GRSTCTL = USB_OTG_GRSTCTL_RXFFLSH;
do {
if (++count > 200000U) {
return -1;
}
} while ((USB_OTG_GLB->GRSTCTL & USB_OTG_GRSTCTL_RXFFLSH) == USB_OTG_GRSTCTL_RXFFLSH);
return 0;
}
static inline int dwc2_flush_txfifo(uint32_t num)
{
uint32_t count = 0U;
USB_OTG_GLB->GRSTCTL = (USB_OTG_GRSTCTL_TXFFLSH | (num << 6));
do {
if (++count > 200000U) {
return -1;
}
} while ((USB_OTG_GLB->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH) == USB_OTG_GRSTCTL_TXFFLSH);
return 0;
}
static inline void dwc2_drivebus(uint8_t state)
{
__IO uint32_t hprt0 = 0U;
hprt0 = USB_OTG_HPRT;
hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |
USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG);
if (((hprt0 & USB_OTG_HPRT_PPWR) == 0U) && (state == 1U)) {
USB_OTG_HPRT = (USB_OTG_HPRT_PPWR | hprt0);
}
if (((hprt0 & USB_OTG_HPRT_PPWR) == USB_OTG_HPRT_PPWR) && (state == 0U)) {
USB_OTG_HPRT = ((~USB_OTG_HPRT_PPWR) & hprt0);
}
}
static void dwc2_pipe_init(uint8_t ch_num, uint8_t devaddr, uint8_t ep_addr, uint8_t ep_type, uint8_t ep_mps, uint8_t speed)
{
uint32_t regval;
/* Clear old interrupt conditions for this host channel. */
USB_OTG_HC((uint32_t)ch_num)->HCINT = 0xFFFFFFFFU;
/* Enable channel interrupts required for this transfer. */
regval = USB_OTG_HCINTMSK_XFRCM |
USB_OTG_HCINTMSK_STALLM |
USB_OTG_HCINTMSK_TXERRM |
USB_OTG_HCINTMSK_DTERRM |
USB_OTG_HCINTMSK_AHBERR;
if ((ep_addr & 0x80U) == 0x80U) {
regval |= USB_OTG_HCINTMSK_BBERRM;
}
switch (ep_type) {
case USB_ENDPOINT_TYPE_CONTROL:
case USB_ENDPOINT_TYPE_BULK:
// if ((ep_addr & 0x80U) == 0x00U) {
// regval |= USB_OTG_HCINTMSK_NYET;
// }
break;
case USB_ENDPOINT_TYPE_INTERRUPT:
regval |= USB_OTG_HCINTMSK_FRMORM;
break;
case USB_ENDPOINT_TYPE_ISOCHRONOUS:
regval |= USB_OTG_HCINTMSK_FRMORM;
break;
}
USB_OTG_HC((uint32_t)ch_num)->HCINTMSK = regval;
/* Enable the top level host channel interrupt. */
USB_OTG_HOST->HAINTMSK |= 1UL << (ch_num & 0xFU);
/* Make sure host channel interrupts are enabled. */
USB_OTG_GLB->GINTMSK |= USB_OTG_GINTMSK_HCIM;
/* Program the HCCHAR register */
regval = (((uint32_t)ep_mps << USB_OTG_HCCHAR_MPSIZ_Pos) & USB_OTG_HCCHAR_MPSIZ) |
((((uint32_t)ep_addr & 0x7FU) << USB_OTG_HCCHAR_EPNUM_Pos) & USB_OTG_HCCHAR_EPNUM) |
(((uint32_t)ep_type << USB_OTG_HCCHAR_EPTYP_Pos) & USB_OTG_HCCHAR_EPTYP) |
(((uint32_t)devaddr << USB_OTG_HCCHAR_DAD_Pos) & USB_OTG_HCCHAR_DAD);
if ((ep_addr & 0x80U) == 0x80U) {
regval |= USB_OTG_HCCHAR_EPDIR;
}
/* LS device plugged to HUB */
if (speed == USB_SPEED_LOW) {
regval |= USB_OTG_HCCHAR_LSDEV;
}
if (ep_type == USB_ENDPOINT_TYPE_INTERRUPT) {
regval |= USB_OTG_HCCHAR_ODDFRM;
}
USB_OTG_HC((uint32_t)ch_num)->HCCHAR = regval;
}
static uint8_t dwc2_calculate_packet_num(uint32_t input_size, uint8_t ep_addr, uint16_t ep_mps, uint32_t *output_size)
{
uint16_t num_packets;
num_packets = (uint16_t)((input_size + ep_mps - 1U) / ep_mps);
if (num_packets > 256) {
num_packets = 256;
}
if (input_size == 0) {
num_packets = 1;
}
if (ep_addr & 0x80) {
input_size = num_packets * ep_mps;
} else {
}
*output_size = input_size;
return num_packets;
}
/* For IN channel HCTSIZ.XferSize is expected to be an integer multiple of ep_mps size.*/
static inline void dwc2_pipe_transfer(uint8_t ch_num, uint8_t ep_addr, uint32_t *buf, uint32_t size, uint8_t num_packets, uint8_t pid)
{
__IO uint32_t tmpreg;
uint8_t is_oddframe;
/* Initialize the HCTSIZn register */
USB_OTG_HC(ch_num)->HCTSIZ = (size & USB_OTG_HCTSIZ_XFRSIZ) |
(((uint32_t)num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) |
(((uint32_t)pid << 29) & USB_OTG_HCTSIZ_DPID);
/* xfer_buff MUST be 32-bits aligned */
USB_OTG_HC(ch_num)->HCDMA = (uint32_t)buf;
is_oddframe = (((uint32_t)USB_OTG_HOST->HFNUM & 0x01U) != 0U) ? 0U : 1U;
USB_OTG_HC(ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_ODDFRM;
USB_OTG_HC(ch_num)->HCCHAR |= (uint32_t)is_oddframe << 29;
/* make sure to set the correct ep direction */
if (ep_addr & 0x80) {
tmpreg |= USB_OTG_HCCHAR_EPDIR;
} else {
tmpreg &= ~USB_OTG_HCCHAR_EPDIR;
}
/* Set host channel enable */
tmpreg = USB_OTG_HC(ch_num)->HCCHAR;
tmpreg &= ~USB_OTG_HCCHAR_CHDIS;
tmpreg |= USB_OTG_HCCHAR_CHENA;
USB_OTG_HC(ch_num)->HCCHAR = tmpreg;
}
static void dwc2_halt(uint8_t ch_num)
{
uint32_t count = 0U;
uint32_t HcEpType = (USB_OTG_HC(ch_num)->HCCHAR & USB_OTG_HCCHAR_EPTYP) >> 18;
uint32_t ChannelEna = (USB_OTG_HC(ch_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) >> 31;
if (((USB_OTG_GLB->GAHBCFG & USB_OTG_GAHBCFG_DMAEN) == USB_OTG_GAHBCFG_DMAEN) &&
(ChannelEna == 0U)) {
return;
}
/* Check for space in the request queue to issue the halt. */
if ((HcEpType == HCCHAR_CTRL) || (HcEpType == HCCHAR_BULK)) {
USB_OTG_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_CHDIS;
if ((USB_OTG_GLB->GAHBCFG & USB_OTG_GAHBCFG_DMAEN) == 0U) {
if ((USB_OTG_GLB->HNPTXSTS & (0xFFU << 16)) == 0U) {
USB_OTG_HC(ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA;
USB_OTG_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA;
USB_OTG_HC(ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR;
do {
if (++count > 1000U) {
break;
}
} while ((USB_OTG_HC(ch_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA);
} else {
USB_OTG_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA;
}
}
} else {
USB_OTG_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_CHDIS;
if ((USB_OTG_HOST->HPTXSTS & (0xFFU << 16)) == 0U) {
USB_OTG_HC(ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA;
USB_OTG_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA;
USB_OTG_HC(ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR;
do {
if (++count > 1000U) {
break;
}
} while ((USB_OTG_HC(ch_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA);
} else {
USB_OTG_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA;
}
}
}
/**
* @brief dwc2_get_glb_intstatus: return the global USB interrupt status
* @retval status
*/
static inline uint32_t dwc2_get_glb_intstatus(void)
{
uint32_t tmpreg;
tmpreg = USB_OTG_GLB->GINTSTS;
tmpreg &= USB_OTG_GLB->GINTMSK;
return tmpreg;
}
static inline uint32_t dwc2_get_current_frame(void)
{
return (USB_OTG_HOST->HFNUM & USB_OTG_HFNUM_FRNUM);
}
/****************************************************************************
* Name: dwc2_pipe_alloc
*
* Description:
* Allocate a channel.
*
****************************************************************************/
static int dwc2_pipe_alloc(void)
{
int chidx;
/* Search the table of channels */
for (chidx = 0; chidx < CONFIG_USB_DWC2_PIPE_NUM; chidx++) {
/* Is this channel available? */
if (!g_dwc2_hcd.chan[chidx].inuse) {
/* Yes... make it "in use" and return the index */
g_dwc2_hcd.chan[chidx].inuse = true;
return chidx;
}
}
/* All of the channels are "in-use" */
return -EBUSY;
}
/****************************************************************************
* Name: dwc2_pipe_free
*
* Description:
* Free a previoiusly allocated channel.
*
****************************************************************************/
static void dwc2_pipe_free(struct dwc2_pipe *chan)
{
/* Mark the channel available */
chan->inuse = false;
}
/****************************************************************************
* Name: dwc2_pipe_waitsetup
*
* Description:
* Set the request for the transfer complete event well BEFORE enabling
* the transfer (as soon as we are absolutely committed to the transfer).
* We do this to minimize race conditions. This logic would have to be
* expanded if we want to have more than one packet in flight at a time!
*
* Assumptions:
* Called from a normal thread context BEFORE the transfer has been
* started.
*
****************************************************************************/
static int dwc2_pipe_waitsetup(struct dwc2_pipe *chan)
{
size_t flags;
int ret = -ENODEV;
flags = usb_osal_enter_critical_section();
/* Is the device still connected? */
if (usbh_get_port_connect_status(1)) {
/* Yes.. then set waiter to indicate that we expect to be informed
* when either (1) the device is disconnected, or (2) the transfer
* completed.
*/
chan->waiter = true;
chan->result = -EBUSY;
chan->xfrd = 0;
#ifdef CONFIG_USBHOST_ASYNCH
chan->callback = NULL;
chan->arg = NULL;
#endif
ret = 0;
}
usb_osal_leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: dwc2_pipe_asynchsetup
*
* Description:
* Set the request for the transfer complete event well BEFORE enabling
* the transfer (as soon as we are absolutely committed to the to avoid
* transfer). We do this to minimize race conditions. This logic would
* have to be expanded if we want to have more than one packet in flight
* at a time!
*
* Assumptions:
* Might be called from the level of an interrupt handler
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static int dwc2_pipe_asynchsetup(struct dwc2_pipe *chan, usbh_asynch_callback_t callback, void *arg)
{
size_t flags;
int ret = -ENODEV;
flags = usb_osal_enter_critical_section();
/* Is the device still connected? */
if (usbh_get_port_connect_status(1)) {
/* Yes.. then set waiter to indicate that we expect to be informed
* when either (1) the device is disconnected, or (2) the transfer
* completed.
*/
chan->waiter = false;
chan->result = -EBUSY;
chan->xfrd = 0;
chan->callback = callback;
chan->arg = arg;
ret = 0;
}
usb_osal_leave_critical_section(flags);
return ret;
}
#endif
/****************************************************************************
* Name: dwc2_pipe_wait
*
* Description:
* Wait for a transfer on a channel to complete.
*
* Assumptions:
* Called from a normal thread context
*
****************************************************************************/
static int dwc2_pipe_wait(struct dwc2_pipe *chan, uint32_t timeout)
{
int ret;
/* Loop, testing for an end of transfer condition. The channel 'result'
* was set to EBUSY and 'waiter' was set to true before the transfer;
* 'waiter' will be set to false and 'result' will be set appropriately
* when the transfer is completed.
*/
if (chan->waiter) {
ret = usb_osal_sem_take(chan->waitsem, timeout);
if (ret < 0) {
return ret;
}
}
/* The transfer is complete re-enable interrupts and return the result */
ret = chan->result;
if (ret < 0) {
return ret;
}
return chan->xfrd;
}
/****************************************************************************
* Name: dwc2_pipe_wakeup
*
* Description:
* A channel transfer has completed... wakeup any threads waiting for the
* transfer to complete.
*
* Assumptions:
* This function is called from the transfer complete interrupt handler for
* the channel. Interrupts are disabled.
*
****************************************************************************/
static void dwc2_pipe_wakeup(struct dwc2_pipe *chan)
{
usbh_asynch_callback_t callback;
void *arg;
int nbytes;
/* Is the transfer complete? */
if (chan->result != -EBUSY) {
/* Is there a thread waiting for this transfer to complete? */
if (chan->waiter) {
/* Wake'em up! */
chan->waiter = false;
usb_osal_sem_give(chan->waitsem);
}
#ifdef CONFIG_USBHOST_ASYNCH
/* No.. is an asynchronous callback expected when the transfer
* completes?
*/
else if (chan->callback) {
callback = chan->callback;
arg = chan->arg;
nbytes = chan->xfrd;
chan->callback = NULL;
chan->arg = NULL;
if (chan->result < 0) {
nbytes = chan->result;
}
callback(arg, nbytes);
}
#endif
}
}
__WEAK void usb_hc_low_level_init(void)
{
}
int usb_hc_sw_init(void)
{
memset(&g_dwc2_hcd, 0, sizeof(struct dwc2_hcd));
for (uint8_t chidx = 0; chidx < CONFIG_USB_DWC2_PIPE_NUM; chidx++) {
g_dwc2_hcd.chan[chidx].exclsem = usb_osal_mutex_create();
g_dwc2_hcd.chan[chidx].waitsem = usb_osal_sem_create(0);
}
return 0;
}
int usb_hc_hw_init(void)
{
int ret;
usb_hc_low_level_init();
USB_OTG_GLB->GAHBCFG &= ~USB_OTG_GAHBCFG_GINT;
ret = dwc2_core_init();
/* Force Host Mode*/
dwc2_set_mode(USB_OTG_MODE_HOST);
usb_osal_msleep(50);
/* Restart the Phy Clock */
USB_OTG_PCGCCTL = 0U;
#if defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx) || defined(STM32F412Zx) || defined(STM32F412Vx) || defined(STM32F412Rx) || defined(STM32F412Cx) || defined(STM32F413xx) || defined(STM32F423xx) || \
defined(STM32F7) || defined(STM32H7)
/* Disable HW VBUS sensing */
USB_OTG_GLB->GCCFG &= ~(USB_OTG_GCCFG_VBDEN);
#else
/*
* Disable HW VBUS sensing. VBUS is internally considered to be always
* at VBUS-Valid level (5V).
*/
USB_OTG_GLB->GCCFG |= USB_OTG_GCCFG_NOVBUSSENS;
USB_OTG_GLB->GCCFG &= ~USB_OTG_GCCFG_VBUSBSEN;
USB_OTG_GLB->GCCFG &= ~USB_OTG_GCCFG_VBUSASEN;
#endif
USB_OTG_HOST->HCFG |= USB_OTG_HCFG_FSLSPCS_0;
usbh_reset_port(1);
/* Set default Max speed support */
USB_OTG_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSS);
ret = dwc2_flush_txfifo(0x10U);
ret = dwc2_flush_rxfifo();
/* Clear all pending HC Interrupts */
for (uint8_t i = 0U; i < CONFIG_USB_DWC2_PIPE_NUM; i++) {
USB_OTG_HC(i)->HCINT = 0xFFFFFFFFU;
USB_OTG_HC(i)->HCINTMSK = 0U;
}
dwc2_drivebus(1);
usb_osal_msleep(200);
/* Disable all interrupts. */
USB_OTG_GLB->GINTMSK = 0U;
/* Clear any pending interrupts */
USB_OTG_GLB->GINTSTS = 0xFFFFFFFFU;
/* set Rx FIFO size */
USB_OTG_GLB->GRXFSIZ = 0x200U;
USB_OTG_GLB->DIEPTXF0_HNPTXFSIZ = (uint32_t)(((0x100U << 16) & USB_OTG_NPTXFD) | 0x200U);
USB_OTG_GLB->HPTXFSIZ = (uint32_t)(((0xE0U << 16) & USB_OTG_HPTXFSIZ_PTXFD) | 0x300U);
USB_OTG_GLB->GAHBCFG |= USB_OTG_GAHBCFG_HBSTLEN_2;
USB_OTG_GLB->GAHBCFG |= USB_OTG_GAHBCFG_DMAEN;
/* Enable interrupts matching to the Host mode ONLY */
USB_OTG_GLB->GINTMSK |= (USB_OTG_GINTMSK_PRTIM | USB_OTG_GINTMSK_HCIM |
USB_OTG_GINTSTS_DISCINT |
USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM);
// USB_OTG_GLB->GINTMSK |=USB_OTG_GINTMSK_SOFM;
USB_OTG_GLB->GAHBCFG |= USB_OTG_GAHBCFG_GINT;
return 0;
}
bool usbh_get_port_connect_status(const uint8_t port)
{
__IO uint32_t hprt0;
hprt0 = USB_OTG_HPRT;
if ((hprt0 & USB_OTG_HPRT_PCSTS) == USB_OTG_HPRT_PCSTS) {
return true;
} else {
return false;
}
}
int usbh_reset_port(const uint8_t port)
{
__IO uint32_t hprt0 = 0U;
hprt0 = USB_OTG_HPRT;
hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |
USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG);
USB_OTG_HPRT = (USB_OTG_HPRT_PRST | hprt0);
usb_osal_msleep(100U); /* See Note #1 */
USB_OTG_HPRT = ((~USB_OTG_HPRT_PRST) & hprt0);
usb_osal_msleep(10U);
return 0;
}
uint8_t usbh_get_port_speed(const uint8_t port)
{
__IO uint32_t hprt0 = 0U;
uint8_t speed;
hprt0 = USB_OTG_HPRT;
speed = (hprt0 & USB_OTG_HPRT_PSPD) >> 17;
if (speed == HPRT0_PRTSPD_HIGH_SPEED) {
return USB_SPEED_HIGH;
} else if (speed == HPRT0_PRTSPD_FULL_SPEED) {
return USB_SPEED_FULL;
} else if (speed == HPRT0_PRTSPD_LOW_SPEED) {
return USB_SPEED_LOW;
} else {
return USB_SPEED_UNKNOWN;
}
}
int usbh_ep0_reconfigure(usbh_epinfo_t ep, uint8_t dev_addr, uint8_t ep_mps, uint8_t speed)
{
struct dwc2_pipe *chan;
int ret;
chan = (struct dwc2_pipe *)ep;
ret = usb_osal_mutex_take(chan->exclsem);
if (ret < 0) {
return ret;
}
chan->dev_addr = dev_addr;
chan->ep_mps = ep_mps;
chan->speed = speed;
usb_osal_mutex_give(chan->exclsem);
return 0;
}
int usbh_ep_alloc(usbh_epinfo_t *ep, const struct usbh_endpoint_cfg *ep_cfg)
{
struct dwc2_pipe *chan;
struct usbh_hubport *hport;
int chidx;
uint8_t speed;
usb_osal_sem_t waitsem;
usb_osal_mutex_t exclsem;
hport = ep_cfg->hport;
chidx = dwc2_pipe_alloc();
chan = &g_dwc2_hcd.chan[chidx];
waitsem = chan->waitsem;
exclsem = chan->exclsem;
memset(chan, 0, sizeof(struct dwc2_pipe));
chan->chidx = chidx;
chan->ep_addr = ep_cfg->ep_addr;
chan->ep_mps = ep_cfg->ep_mps;
chan->ep_type = ep_cfg->ep_type;
chan->ep_interval = ep_cfg->ep_interval;
chan->dev_addr = hport->dev_addr;
chan->speed = hport->speed;
if (ep_cfg->ep_type == USB_ENDPOINT_TYPE_CONTROL) {
chan->data_pid = HC_PID_DATA1;
} else {
dwc2_pipe_init(chidx, chan->dev_addr, ep_cfg->ep_addr, ep_cfg->ep_type, chan->ep_mps, chan->speed);
chan->data_pid = HC_PID_DATA0;
}
chan->inuse = true;
chan->waitsem = waitsem;
chan->exclsem = exclsem;
*ep = (usbh_epinfo_t)chan;
return 0;
}
int usbh_ep_free(usbh_epinfo_t ep)
{
struct dwc2_pipe *chan;
chan = (struct dwc2_pipe *)ep;
dwc2_pipe_free(chan);
return 0;
}
int usbh_control_transfer(usbh_epinfo_t ep, struct usb_setup_packet *setup, uint8_t *buffer)
{
struct dwc2_pipe *chan;
int chidx;
int ret;
chan = (struct dwc2_pipe *)ep;
ret = usb_osal_mutex_take(chan->exclsem);
if (ret < 0) {
return ret;
}
ret = dwc2_pipe_waitsetup(chan);
if (ret < 0) {
goto error_out;
}
chidx = chan->chidx;
chan->waiter = true;
chan->result = -EBUSY;
chan->num_packets = dwc2_calculate_packet_num(8, chan->ep_addr, chan->ep_mps, &chan->xferlen);
dwc2_pipe_init(chidx, chan->dev_addr, 0x00, 0x00, chan->ep_mps, chan->speed);
dwc2_pipe_transfer(chidx, 0x00, (uint32_t *)setup, chan->xferlen, chan->num_packets, HC_PID_SETUP);
ret = dwc2_pipe_wait(chan, CONFIG_USBHOST_CONTROL_TRANSFER_TIMEOUT);
if (ret < 0) {
goto error_out;
}
if (setup->wLength && buffer) {
if (setup->bmRequestType & 0x80) {
chan->waiter = true;
chan->result = -EBUSY;
chan->num_packets = dwc2_calculate_packet_num(setup->wLength, 0x80, chan->ep_mps, &chan->xferlen);
dwc2_pipe_init(chidx, chan->dev_addr, 0x80, 0x00, chan->ep_mps, chan->speed);
dwc2_pipe_transfer(chidx, 0x80, (uint32_t *)buffer, chan->xferlen, chan->num_packets, HC_PID_DATA1);
ret = dwc2_pipe_wait(chan, CONFIG_USBHOST_CONTROL_TRANSFER_TIMEOUT);
if (ret < 0) {
goto error_out;
}
chan->waiter = true;
chan->result = -EBUSY;
chan->num_packets = dwc2_calculate_packet_num(0, 0x00, chan->ep_mps, &chan->xferlen);
dwc2_pipe_init(chidx, chan->dev_addr, 0x00, 0x00, chan->ep_mps, chan->speed);
dwc2_pipe_transfer(chidx, 0x00, NULL, chan->xferlen, chan->num_packets, HC_PID_DATA1);
ret = dwc2_pipe_wait(chan, CONFIG_USBHOST_CONTROL_TRANSFER_TIMEOUT);
if (ret < 0) {
goto error_out;
}
} else {
chan->waiter = true;
chan->result = -EBUSY;
chan->num_packets = dwc2_calculate_packet_num(setup->wLength, 0x00, chan->ep_mps, &chan->xferlen);
dwc2_pipe_init(chidx, chan->dev_addr, 0x00, 0x00, chan->ep_mps, chan->speed);
dwc2_pipe_transfer(chidx, 0x00, (uint32_t *)buffer, chan->xferlen, chan->num_packets, HC_PID_DATA1);
ret = dwc2_pipe_wait(chan, CONFIG_USBHOST_CONTROL_TRANSFER_TIMEOUT);
if (ret < 0) {
goto error_out;
}
chan->waiter = true;
chan->result = -EBUSY;
chan->num_packets = dwc2_calculate_packet_num(0, 0x80, chan->ep_mps, &chan->xferlen);
dwc2_pipe_init(chidx, chan->dev_addr, 0x80, 0x00, chan->ep_mps, chan->speed);
dwc2_pipe_transfer(chidx, 0x80, NULL, chan->xferlen, chan->num_packets, HC_PID_DATA1);
ret = dwc2_pipe_wait(chan, CONFIG_USBHOST_CONTROL_TRANSFER_TIMEOUT);
if (ret < 0) {
goto error_out;
}
}
} else {
chan->waiter = true;
chan->result = -EBUSY;
chan->num_packets = dwc2_calculate_packet_num(0, 0x80, chan->ep_mps, &chan->xferlen);
dwc2_pipe_init(chidx, chan->dev_addr, 0x80, 0x00, chan->ep_mps, chan->speed);
dwc2_pipe_transfer(chidx, 0x80, NULL, chan->xferlen, chan->num_packets, HC_PID_DATA1);
ret = dwc2_pipe_wait(chan, CONFIG_USBHOST_CONTROL_TRANSFER_TIMEOUT);
if (ret < 0) {
goto error_out;
}
}
usb_osal_mutex_give(chan->exclsem);
return ret;
error_out:
chan->waiter = false;
usb_osal_mutex_give(chan->exclsem);
return ret;
}
int usbh_ep_bulk_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, uint32_t timeout)
{
struct dwc2_pipe *chan;
int chidx;
int ret;
chan = (struct dwc2_pipe *)ep;
ret = usb_osal_mutex_take(chan->exclsem);
if (ret < 0) {
return ret;
}
ret = dwc2_pipe_waitsetup(chan);
if (ret < 0) {
goto error_out;
}
chidx = chan->chidx;
chan->num_packets = dwc2_calculate_packet_num(buflen, chan->ep_addr, chan->ep_mps, &chan->xferlen);
dwc2_pipe_transfer(chidx, chan->ep_addr, (uint32_t *)buffer, chan->xferlen, chan->num_packets, chan->data_pid);
ret = dwc2_pipe_wait(chan, timeout);
if (ret < 0) {
goto error_out;
}
usb_osal_mutex_give(chan->exclsem);
return ret;
error_out:
chan->waiter = false;
usb_osal_mutex_give(chan->exclsem);
return ret;
}
int usbh_ep_intr_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, uint32_t timeout)
{
struct dwc2_pipe *chan;
int chidx;
int ret;
uint32_t wait_ms_count = 0;
chan = (struct dwc2_pipe *)ep;
ret = usb_osal_mutex_take(chan->exclsem);
if (ret < 0) {
return ret;
}
ret = dwc2_pipe_waitsetup(chan);
if (ret < 0) {
goto error_out;
}
chidx = chan->chidx;
chan->num_packets = dwc2_calculate_packet_num(buflen, chan->ep_addr, chan->ep_mps, &chan->xferlen);
while (1) {
wait_ms_count++;
dwc2_pipe_transfer(chidx, chan->ep_addr, (uint32_t *)buffer, chan->xferlen, chan->num_packets, chan->data_pid);
usb_osal_msleep(chan->ep_interval);
if (chan->result != -EBUSY) {
break;
}
if ((wait_ms_count * chan->ep_interval) > timeout) {
ret = -ETIMEDOUT;
goto error_out;
}
}
ret = dwc2_pipe_wait(chan, 0);
if (ret < 0) {
goto error_out;
}
usb_osal_mutex_give(chan->exclsem);
return ret;
error_out:
chan->waiter = false;
usb_osal_mutex_give(chan->exclsem);
return ret;
}
int usbh_ep_bulk_async_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, usbh_asynch_callback_t callback, void *arg)
{
struct dwc2_pipe *chan;
int chidx;
int ret;
chan = (struct dwc2_pipe *)ep;
ret = usb_osal_mutex_take(chan->exclsem);
if (ret < 0) {
return ret;
}
ret = dwc2_pipe_asynchsetup(chan, callback, arg);
if (ret < 0) {
goto error_out;
}
chidx = chan->chidx;
chan->num_packets = dwc2_calculate_packet_num(buflen, chan->ep_addr, chan->ep_mps, &chan->xferlen);
dwc2_pipe_transfer(chidx, chan->ep_addr, (uint32_t *)buffer, chan->xferlen, chan->num_packets, chan->data_pid);
return 0;
error_out:
usb_osal_mutex_give(chan->exclsem);
return ret;
}
int usbh_ep_intr_async_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, usbh_asynch_callback_t callback, void *arg)
{
return -1;
}
int usb_ep_cancel(usbh_epinfo_t ep)
{
struct dwc2_pipe *chan;
int ret;
size_t flags;
#ifdef CONFIG_USBHOST_ASYNCH
usbh_asynch_callback_t callback;
void *arg;
#endif
chan = (struct dwc2_pipe *)ep;
flags = usb_osal_enter_critical_section();
chan->result = -ESHUTDOWN;
#ifdef CONFIG_USBHOST_ASYNCH
/* Extract the callback information */
callback = chan->callback;
arg = chan->arg;
chan->callback = NULL;
chan->arg = NULL;
chan->xfrd = 0;
#endif
usb_osal_leave_critical_section(flags);
/* Is there a thread waiting for this transfer to complete? */
if (chan->waiter) {
/* Wake'em up! */
chan->waiter = false;
usb_osal_sem_give(chan->waitsem);
}
#ifdef CONFIG_USBHOST_ASYNCH
/* No.. is an asynchronous callback expected when the transfer completes? */
else if (callback) {
/* Then perform the callback */
callback(arg, -ESHUTDOWN);
}
#endif
return 0;
}
//static void usb_dwc2_rxqlvl_irq_handler(void)
//{
// uint32_t pktsts;
// uint32_t pktcnt;
// uint32_t GrxstspReg;
// uint32_t xferSizePktCnt;
// uint32_t tmpreg;
// uint32_t ch_num;
// uint32_t len32b;
// uint32_t *pdest;
// struct dwc2_pipe *chan;
// GrxstspReg = USB_OTG_GLB->GRXSTSP;
// ch_num = GrxstspReg & USB_OTG_GRXSTSP_EPNUM;
// pktsts = (GrxstspReg & USB_OTG_GRXSTSP_PKTSTS) >> 17;
// pktcnt = (GrxstspReg & USB_OTG_GRXSTSP_BCNT) >> 4;
// chan = &g_dwc2_hcd.chan[ch_num];
// switch (pktsts) {
// case GRXSTS_PKTSTS_IN:
// /* Read the data into the host buffer. */
// if ((pktcnt > 0U) && (chan->buffer != NULL)) {
// len32b = ((uint32_t)pktcnt + 3U) / 4U;
// pdest = (uint32_t *)chan->buffer;
// for (uint8_t i = 0U; i < len32b; i++) {
// *pdest = USB_OTG_FIFO(0U);
// pdest++;
// }
// chan->buffer += pktcnt;
// chan->xfrd += pktcnt;
// chan->buflen -= pktcnt;
// if (chan->buflen == 0) {
// }
// }
// break;
// case GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
// break;
// case GRXSTS_PKTSTS_IN_XFER_COMP:
// case GRXSTS_PKTSTS_CH_HALTED:
// default:
// break;
// }
//}
static void dwc2_inchan_irq_handler(uint8_t ch_num)
{
uint32_t chan_intstatus;
struct dwc2_pipe *chan;
chan_intstatus = (USB_OTG_HC(ch_num)->HCINT) & (USB_OTG_HC((uint32_t)ch_num)->HCINTMSK);
chan = &g_dwc2_hcd.chan[ch_num];
if ((chan_intstatus & USB_OTG_HCINT_XFRC) == USB_OTG_HCINT_XFRC) {
chan->result = 0;
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_XFRC);
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_NAK);
} else if ((chan_intstatus & USB_OTG_HCINT_AHBERR) == USB_OTG_HCINT_AHBERR) {
USB_UNMASK_HALT_HC_INT(ch_num);
chan->result = -EIO;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_AHBERR);
} else if ((chan_intstatus & USB_OTG_HCINT_STALL) == USB_OTG_HCINT_STALL) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EPERM;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_STALL);
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_NAK);
} else if ((chan_intstatus & USB_OTG_HCINT_NAK) == USB_OTG_HCINT_NAK) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EAGAIN;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_NAK);
} else if ((chan_intstatus & USB_OTG_HCINT_ACK) == USB_OTG_HCINT_ACK) {
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_ACK);
} else if ((chan_intstatus & USB_OTG_HCINT_NYET) == USB_OTG_HCINT_NYET) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EAGAIN;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_NYET);
} else if ((chan_intstatus & USB_OTG_HCINT_TXERR) == USB_OTG_HCINT_TXERR) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EIO;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_TXERR);
} else if ((chan_intstatus & USB_OTG_HCINT_BBERR) == USB_OTG_HCINT_BBERR) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EIO;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_BBERR);
} else if ((chan_intstatus & USB_OTG_HCINT_FRMOR) == USB_OTG_HCINT_FRMOR) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EPIPE;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_FRMOR);
} else if ((chan_intstatus & USB_OTG_HCINT_DTERR) == USB_OTG_HCINT_DTERR) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EIO;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_NAK);
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_DTERR);
} else if ((chan_intstatus & USB_OTG_HCINT_CHH) == USB_OTG_HCINT_CHH) {
USB_MASK_HALT_HC_INT(ch_num);
if (chan->result == 0) {
uint32_t count = chan->xferlen - (USB_OTG_HC(ch_num)->HCTSIZ & USB_OTG_HCTSIZ_XFRSIZ); /* size that has received */
uint32_t has_sent_packets = chan->num_packets - ((USB_OTG_HC(ch_num)->HCTSIZ & USB_OTG_DIEPTSIZ_PKTCNT) >> 19); /*how many packets has sent*/
chan->xfrd += count;
if ((has_sent_packets % 2) == 1) /* Flip in odd numbers */
{
if (chan->data_pid == HC_PID_DATA0) {
chan->data_pid = HC_PID_DATA1;
} else {
chan->data_pid = HC_PID_DATA0;
}
}
chan->result = 0;
dwc2_pipe_wakeup(chan);
} else if (chan->result == -EAGAIN) {
/* re-activate the channel */
uint32_t tmpreg = USB_OTG_HC(ch_num)->HCCHAR;
tmpreg &= ~USB_OTG_HCCHAR_CHDIS;
tmpreg |= USB_OTG_HCCHAR_CHENA;
USB_OTG_HC(ch_num)->HCCHAR = tmpreg;
} else {
dwc2_pipe_wakeup(chan);
}
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_CHH);
}
}
static void dwc2_outchan_irq_handler(uint8_t ch_num)
{
uint32_t chan_intstatus;
struct dwc2_pipe *chan;
uint16_t buflen;
chan_intstatus = (USB_OTG_HC(ch_num)->HCINT) & (USB_OTG_HC((uint32_t)ch_num)->HCINTMSK);
chan = &g_dwc2_hcd.chan[ch_num];
if ((chan_intstatus & USB_OTG_HCINT_XFRC) == USB_OTG_HCINT_XFRC) {
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_XFRC);
dwc2_halt(ch_num);
chan->result = 0;
USB_UNMASK_HALT_HC_INT(ch_num);
} else if ((chan_intstatus & USB_OTG_HCINT_AHBERR) == USB_OTG_HCINT_AHBERR) {
USB_UNMASK_HALT_HC_INT(ch_num);
chan->result = -EIO;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_AHBERR);
} else if ((chan_intstatus & USB_OTG_HCINT_STALL) == USB_OTG_HCINT_STALL) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EPERM;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_STALL);
} else if ((chan_intstatus & USB_OTG_HCINT_NAK) == USB_OTG_HCINT_NAK) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EAGAIN;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_NAK);
} else if ((chan_intstatus & USB_OTG_HCINT_ACK) == USB_OTG_HCINT_ACK) {
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_ACK);
} else if ((chan_intstatus & USB_OTG_HCINT_NYET) == USB_OTG_HCINT_NYET) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EAGAIN;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_NYET);
} else if ((chan_intstatus & USB_OTG_HCINT_TXERR) == USB_OTG_HCINT_TXERR) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EIO;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_TXERR);
} else if ((chan_intstatus & USB_OTG_HCINT_BBERR) == USB_OTG_HCINT_BBERR) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EIO;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_BBERR);
} else if ((chan_intstatus & USB_OTG_HCINT_FRMOR) == USB_OTG_HCINT_FRMOR) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EPIPE;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_FRMOR);
} else if ((chan_intstatus & USB_OTG_HCINT_DTERR) == USB_OTG_HCINT_DTERR) {
USB_UNMASK_HALT_HC_INT(ch_num);
dwc2_halt(ch_num);
chan->result = -EIO;
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_DTERR);
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_NAK);
} else if ((chan_intstatus & USB_OTG_HCINT_CHH) == USB_OTG_HCINT_CHH) {
USB_MASK_HALT_HC_INT(ch_num);
if (chan->result == 0) {
uint32_t count = (USB_OTG_HC(ch_num)->HCTSIZ & USB_OTG_HCTSIZ_XFRSIZ); /* last send size */
if (count == chan->ep_mps) {
chan->xfrd += chan->num_packets * chan->ep_mps;
} else {
chan->xfrd += (chan->num_packets - 1) * chan->ep_mps + count;
}
if ((chan->num_packets % 2) == 1) /* Flip in odd numbers */
{
if (chan->data_pid == HC_PID_DATA0) {
chan->data_pid = HC_PID_DATA1;
} else {
chan->data_pid = HC_PID_DATA0;
}
}
chan->result = 0;
dwc2_pipe_wakeup(chan);
} else if (chan->result == -EAGAIN) {
/* re-activate the channel */
uint32_t tmpreg = USB_OTG_HC(ch_num)->HCCHAR;
tmpreg &= ~USB_OTG_HCCHAR_CHDIS;
tmpreg |= USB_OTG_HCCHAR_CHENA;
USB_OTG_HC(ch_num)->HCCHAR = tmpreg;
} else {
dwc2_pipe_wakeup(chan);
}
CLEAR_HC_INT(ch_num, USB_OTG_HCINT_CHH);
}
}
void dwc2_reset_handler(void *arg)
{
usbh_reset_port(1);
}
static void dwc2_port_irq_handler(void)
{
__IO uint32_t hprt0, hprt0_dup, regval;
bool reset = false;
/* Handle Host Port Interrupts */
hprt0 = USB_OTG_HPRT;
hprt0_dup = USB_OTG_HPRT;
hprt0_dup &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |
USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG);
/* Check whether Port Connect detected */
if ((hprt0 & USB_OTG_HPRT_PCDET) == USB_OTG_HPRT_PCDET) {
if ((hprt0 & USB_OTG_HPRT_PCSTS) == USB_OTG_HPRT_PCSTS) {
reset = true;
}
hprt0_dup |= USB_OTG_HPRT_PCDET;
}
/* Check whether Port Enable Changed */
if ((hprt0 & USB_OTG_HPRT_PENCHNG) == USB_OTG_HPRT_PENCHNG) {
hprt0_dup |= USB_OTG_HPRT_PENCHNG;
if ((hprt0 & USB_OTG_HPRT_PENA) == USB_OTG_HPRT_PENA) {
#if defined(CONFIG_USB_DWC2_ULPI_PHY)
#else
if ((hprt0 & USB_OTG_HPRT_PSPD) == (HPRT0_PRTSPD_LOW_SPEED << 17)) {
USB_OTG_HOST->HFIR = 6000U;
if ((USB_OTG_HOST->HCFG & USB_OTG_HCFG_FSLSPCS) != USB_OTG_HCFG_FSLSPCS_1) {
regval = USB_OTG_HOST->HCFG;
regval &= ~USB_OTG_HCFG_FSLSPCS;
regval |= USB_OTG_HCFG_FSLSPCS_1;
USB_OTG_HOST->HCFG = regval;
reset = true;
}
} else {
USB_OTG_HOST->HFIR = 48000U;
if ((USB_OTG_HOST->HCFG & USB_OTG_HCFG_FSLSPCS) != USB_OTG_HCFG_FSLSPCS_0) {
regval = USB_OTG_HOST->HCFG;
regval &= ~USB_OTG_HCFG_FSLSPCS;
regval |= USB_OTG_HCFG_FSLSPCS_0;
USB_OTG_HOST->HCFG = regval;
reset = true;
}
}
#endif
usbh_event_notify_handler(USBH_EVENT_CONNECTED, 1);
} else {
for (int chidx = 0; chidx < CONFIG_USB_DWC2_PIPE_NUM; chidx++) {
struct dwc2_pipe *chan;
chan = &g_dwc2_hcd.chan[chidx];
if (chan->waiter) {
chan->waiter = false;
usb_osal_sem_give(chan->waitsem);
}
}
usbh_event_notify_handler(USBH_EVENT_DISCONNECTED, 1);
}
}
/* Check for an overcurrent */
if ((hprt0 & USB_OTG_HPRT_POCCHNG) == USB_OTG_HPRT_POCCHNG) {
hprt0_dup |= USB_OTG_HPRT_POCCHNG;
}
/* Clear Port Interrupts */
USB_OTG_HPRT = hprt0_dup;
if (reset) {
usb_workqueue_submit(&g_hpworkq, &g_dwc2_hcd.work, dwc2_reset_handler, NULL, 0);
}
}
void USBH_IRQHandler(void)
{
uint32_t gint_status, chan_int;
gint_status = dwc2_get_glb_intstatus();
if ((USB_OTG_GLB->GINTSTS & 0x1U) == USB_OTG_MODE_HOST) {
/* Avoid spurious interrupt */
if (gint_status == 0) {
return;
}
if (gint_status & USB_OTG_GINTSTS_HPRTINT) {
dwc2_port_irq_handler();
}
if (gint_status & USB_OTG_GINTSTS_DISCINT) {
USB_OTG_GLB->GINTSTS = USB_OTG_GINTSTS_DISCINT;
}
// if (gint_status & USB_OTG_GINTSTS_RXFLVL) {
// USB_MASK_INTERRUPT(USB_OTG_GLB, USB_OTG_GINTSTS_RXFLVL);
// usb_dwc2_rxqlvl_irq_handler();
// USB_UNMASK_INTERRUPT(USB_OTG_GLB, USB_OTG_GINTSTS_RXFLVL);
// }
if (gint_status & USB_OTG_GINTSTS_HCINT) {
chan_int = (USB_OTG_HOST->HAINT & USB_OTG_HOST->HAINTMSK) & 0xFFFFU;
for (uint8_t i = 0U; i < CONFIG_USB_DWC2_PIPE_NUM; i++) {
if ((chan_int & (1UL << (i & 0xFU))) != 0U) {
if ((USB_OTG_HC(i)->HCCHAR & USB_OTG_HCCHAR_EPDIR) == USB_OTG_HCCHAR_EPDIR) {
dwc2_inchan_irq_handler(i);
} else {
dwc2_outchan_irq_handler(i);
}
}
}
USB_OTG_GLB->GINTSTS = USB_OTG_GINTSTS_HCINT;
}
if (gint_status & USB_OTG_GINTSTS_SOF) {
USB_OTG_GLB->GINTSTS = USB_OTG_GINTSTS_SOF;
}
}
}