Files
luban-lite/packages/third-party/cherryusb/port/musb/usb_hc_musb.c
刘可亮 564e22b32f v0.7.5
2023-08-28 09:48:01 +08:00

1299 lines
39 KiB
C

#include "usbh_core.h"
#include "usb_musb_reg.h"
#define HWREG(x) \
(*((volatile uint32_t *)(x)))
#define HWREGH(x) \
(*((volatile uint16_t *)(x)))
#define HWREGB(x) \
(*((volatile uint8_t *)(x)))
#ifdef CONFIG_USB_MUSB_SUNXI
#ifndef USB_BASE
#define USB_BASE (0x01c13000)
#endif
#ifndef USBH_IRQHandler
#define USBH_IRQHandler USBH_IRQHandler //use actual usb irq name instead
#endif
#define MUSB_FADDR_OFFSET 0x98
#define MUSB_POWER_OFFSET 0x40
#define MUSB_TXIS_OFFSET 0x44
#define MUSB_RXIS_OFFSET 0x46
#define MUSB_TXIE_OFFSET 0x48
#define MUSB_RXIE_OFFSET 0x4A
#define MUSB_IS_OFFSET 0x4C
#define MUSB_IE_OFFSET 0x50
#define MUSB_EPIDX_OFFSET 0x42
#define MUSB_IND_TXMAP_OFFSET 0x80
#define MUSB_IND_TXCSRL_OFFSET 0x82
#define MUSB_IND_TXCSRH_OFFSET 0x83
#define MUSB_IND_RXMAP_OFFSET 0x84
#define MUSB_IND_RXCSRL_OFFSET 0x86
#define MUSB_IND_RXCSRH_OFFSET 0x87
#define MUSB_IND_RXCOUNT_OFFSET 0x88
#define MUSB_IND_TXTYPE_OFFSET 0x8C
#define MUSB_IND_TXINTERVAL_OFFSET 0x8D
#define MUSB_IND_RXTYPE_OFFSET 0x8E
#define MUSB_IND_RXINTERVAL_OFFSET 0x8F
#define MUSB_FIFO_OFFSET 0x00
#define MUSB_DEVCTL_OFFSET 0x41
#define MUSB_TXFIFOSZ_OFFSET 0x90
#define MUSB_RXFIFOSZ_OFFSET 0x94
#define MUSB_TXFIFOADD_OFFSET 0x92
#define MUSB_RXFIFOADD_OFFSET 0x96
#define MUSB_TXFUNCADDR0_OFFSET 0x98
#define MUSB_TXHUBADDR0_OFFSET 0x9A
#define MUSB_TXHUBPORT0_OFFSET 0x9B
#define MUSB_TXFUNCADDRx_OFFSET 0x98
#define MUSB_TXHUBADDRx_OFFSET 0x9A
#define MUSB_TXHUBPORTx_OFFSET 0x9B
#define MUSB_RXFUNCADDRx_OFFSET 0x9C
#define MUSB_RXHUBADDRx_OFFSET 0x9E
#define MUSB_RXHUBPORTx_OFFSET 0x9F
#define USB_TXADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDRx_OFFSET)
#define USB_TXHUBADDR_BASE(ep_idx) (USB_BASE + MUSB_TXHUBADDRx_OFFSET)
#define USB_TXHUBPORT_BASE(ep_idx) (USB_BASE + MUSB_TXHUBPORTx_OFFSET)
#define USB_RXADDR_BASE(ep_idx) (USB_BASE + MUSB_RXFUNCADDRx_OFFSET)
#define USB_RXHUBADDR_BASE(ep_idx) (USB_BASE + MUSB_RXHUBADDRx_OFFSET)
#define USB_RXHUBPORT_BASE(ep_idx) (USB_BASE + MUSB_RXHUBPORTx_OFFSET)
#elif defined(CONFIG_USB_MUSB_CUSTOM)
#else
#ifndef USBH_IRQHandler
#define USBH_IRQHandler USB_INT_Handler
#endif
#ifndef USB_BASE
#define USB_BASE (0x40086400UL)
#endif
#define MUSB_FADDR_OFFSET 0x00
#define MUSB_POWER_OFFSET 0x01
#define MUSB_TXIS_OFFSET 0x02
#define MUSB_RXIS_OFFSET 0x04
#define MUSB_TXIE_OFFSET 0x06
#define MUSB_RXIE_OFFSET 0x08
#define MUSB_IS_OFFSET 0x0A
#define MUSB_IE_OFFSET 0x0B
#define MUSB_EPIDX_OFFSET 0x0E
#define MUSB_IND_TXMAP_OFFSET 0x10
#define MUSB_IND_TXCSRL_OFFSET 0x12
#define MUSB_IND_TXCSRH_OFFSET 0x13
#define MUSB_IND_RXMAP_OFFSET 0x14
#define MUSB_IND_RXCSRL_OFFSET 0x16
#define MUSB_IND_RXCSRH_OFFSET 0x17
#define MUSB_IND_RXCOUNT_OFFSET 0x18
#define MUSB_IND_TXTYPE_OFFSET 0x1A
#define MUSB_IND_TXINTERVAL_OFFSET 0x1B
#define MUSB_IND_RXTYPE_OFFSET 0x1C
#define MUSB_IND_RXINTERVAL_OFFSET 0x1D
#define MUSB_FIFO_OFFSET 0x20
#define MUSB_DEVCTL_OFFSET 0x60
#define MUSB_TXFIFOSZ_OFFSET 0x62
#define MUSB_RXFIFOSZ_OFFSET 0x63
#define MUSB_TXFIFOADD_OFFSET 0x64
#define MUSB_RXFIFOADD_OFFSET 0x66
#define MUSB_TXFUNCADDR0_OFFSET 0x80
#define MUSB_TXHUBADDR0_OFFSET 0x82
#define MUSB_TXHUBPORT0_OFFSET 0x83
#define MUSB_TXFUNCADDRx_OFFSET 0x88
#define MUSB_TXHUBADDRx_OFFSET 0x8A
#define MUSB_TXHUBPORTx_OFFSET 0x8B
#define MUSB_RXFUNCADDRx_OFFSET 0x8C
#define MUSB_RXHUBADDRx_OFFSET 0x8E
#define MUSB_RXHUBPORTx_OFFSET 0x8F
#define USB_TXADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx)
#define USB_TXHUBADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 2)
#define USB_TXHUBPORT_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 3)
#define USB_RXADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 4)
#define USB_RXHUBADDR_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 6)
#define USB_RXHUBPORT_BASE(ep_idx) (USB_BASE + MUSB_TXFUNCADDR0_OFFSET + 0x8 * ep_idx + 7)
#endif
#define USB_FIFO_BASE(ep_idx) (USB_BASE + MUSB_FIFO_OFFSET + 0x4 * ep_idx)
#ifndef CONIFG_USB_MUSB_PIPE_NUM
#define CONIFG_USB_MUSB_PIPE_NUM 5
#endif
typedef enum {
USB_EP0_STATE_SETUP = 0x0, /**< SETUP DATA */
USB_EP0_STATE_IN_DATA, /**< IN DATA */
USB_EP0_STATE_IN_STATUS, /**< IN status*/
USB_EP0_STATE_OUT_DATA, /**< OUT DATA */
USB_EP0_STATE_OUT_STATUS, /**< OUT status */
USB_EP0_STATE_IN_DATA_C, /**< IN status*/
USB_EP0_STATE_IN_STATUS_C, /**< IN DATA */
} ep0_state_t;
struct musb_pipe {
uint8_t ep_idx;
bool enable; /* True: start transfer */
bool in; /* True: IN endpoint */
uint16_t mps;
uint8_t interval; /* Polling interval */
uint8_t speed;
uint8_t *buffer;
volatile uint32_t buflen;
volatile uint16_t xfrd; /* Bytes transferred (at end of transfer) */
volatile int result; /* The result of the transfer */
volatile bool waiter; /* True: Thread is waiting for a channel event */
usb_osal_sem_t waitsem; /* Channel wait semaphore */
#ifdef CONFIG_USBHOST_ASYNCH
usbh_asynch_callback_t callback; /* Transfer complete callback */
void *arg; /* Argument that accompanies the callback */
#endif
struct usbh_hubport *hport;
};
struct musb_hcd {
struct musb_pipe chan[CONIFG_USB_MUSB_PIPE_NUM][2]; /* Support Bidirectional ep */
usb_osal_mutex_t exclsem[CONIFG_USB_MUSB_PIPE_NUM]; /* Support mutually exclusive access */
} g_musb_hcd;
static volatile uint8_t usb_ep0_state = USB_EP0_STATE_SETUP;
volatile uint8_t ep0_outlen = 0;
/* get current active ep */
static uint8_t musb_get_active_ep(void)
{
return HWREGB(USB_BASE + MUSB_EPIDX_OFFSET);
}
/* set the active ep */
static void musb_set_active_ep(uint8_t ep_index)
{
HWREGB(USB_BASE + MUSB_EPIDX_OFFSET) = ep_index;
}
static void musb_fifo_flush(uint8_t ep)
{
uint8_t ep_idx = ep & 0x7f;
if (ep_idx == 0) {
if ((HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) & (USB_CSRL0_RXRDY | USB_CSRL0_TXRDY)) != 0)
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) |= USB_CSRH0_FLUSH;
} else {
if (ep & 0x80) {
if (HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) & USB_TXCSRL1_TXRDY)
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) |= USB_TXCSRL1_FLUSH;
} else {
if (HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) & USB_RXCSRL1_RXRDY)
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) |= USB_RXCSRL1_FLUSH;
}
}
}
static void musb_write_packet(uint8_t ep_idx, uint8_t *buffer, uint16_t len)
{
uint32_t *buf32;
uint8_t *buf8;
uint32_t count32;
uint32_t count8;
int i;
if ((uint32_t)buffer & 0x03) {
buf8 = buffer;
for (i = 0; i < len; i++) {
HWREGB(USB_FIFO_BASE(ep_idx)) = *buf8++;
}
} else {
count32 = len >> 2;
count8 = len & 0x03;
buf32 = (uint32_t *)buffer;
while (count32--) {
HWREG(USB_FIFO_BASE(ep_idx)) = *buf32++;
}
buf8 = (uint8_t *)buf32;
while (count8--) {
HWREGB(USB_FIFO_BASE(ep_idx)) = *buf8++;
}
}
}
static void musb_read_packet(uint8_t ep_idx, uint8_t *buffer, uint16_t len)
{
uint32_t *buf32;
uint8_t *buf8;
uint32_t count32;
uint32_t count8;
int i;
if ((uint32_t)buffer & 0x03) {
buf8 = buffer;
for (i = 0; i < len; i++) {
*buf8++ = HWREGB(USB_FIFO_BASE(ep_idx));
}
} else {
count32 = len >> 2;
count8 = len & 0x03;
buf32 = (uint32_t *)buffer;
while (count32--) {
*buf32++ = HWREG(USB_FIFO_BASE(ep_idx));
}
buf8 = (uint8_t *)buf32;
while (count8--) {
*buf8++ = HWREGB(USB_FIFO_BASE(ep_idx));
}
}
}
/****************************************************************************
* Name: musb_pipe_waitsetup
*
* Description:
* Set the request for the transfer complete event well BEFORE enabling
* the transfer (as soon as we are absolutely committed to the transfer).
* We do this to minimize race conditions. This logic would have to be
* expanded if we want to have more than one packet in flight at a time!
*
* Assumptions:
* Called from a normal thread context BEFORE the transfer has been
* started.
*
****************************************************************************/
static int musb_pipe_waitsetup(struct musb_pipe *chan)
{
size_t flags;
int ret = -ENODEV;
flags = usb_osal_enter_critical_section();
/* Is the device still connected? */
if (usbh_get_port_connect_status(0)) {
/* Yes.. then set waiter to indicate that we expect to be informed
* when either (1) the device is disconnected, or (2) the transfer
* completed.
*/
chan->waiter = true;
chan->enable = true;
chan->result = -EBUSY;
chan->xfrd = 0;
#ifdef CONFIG_USBHOST_ASYNCH
chan->callback = NULL;
chan->arg = NULL;
#endif
ret = 0;
}
usb_osal_leave_critical_section(flags);
return ret;
}
/****************************************************************************
* Name: musb_pipe_asynchsetup
*
* Description:
* Set the request for the transfer complete event well BEFORE enabling
* the transfer (as soon as we are absolutely committed to the to avoid
* transfer). We do this to minimize race conditions. This logic would
* have to be expanded if we want to have more than one packet in flight
* at a time!
*
* Assumptions:
* Might be called from the level of an interrupt handler
*
****************************************************************************/
#ifdef CONFIG_USBHOST_ASYNCH
static int musb_pipe_asynchsetup(struct musb_pipe *chan, usbh_asynch_callback_t callback, void *arg)
{
size_t flags;
int ret = -ENODEV;
flags = usb_osal_enter_critical_section();
/* Is the device still connected? */
if (usbh_get_port_connect_status(0)) {
/* Yes.. then set waiter to indicate that we expect to be informed
* when either (1) the device is disconnected, or (2) the transfer
* completed.
*/
chan->waiter = false;
chan->enable = true;
chan->result = -EBUSY;
chan->xfrd = 0;
chan->callback = callback;
chan->arg = arg;
ret = 0;
}
usb_osal_leave_critical_section(flags);
return ret;
}
#endif
/****************************************************************************
* Name: musb_pipe_wait
*
* Description:
* Wait for a transfer on a channel to complete.
*
* Assumptions:
* Called from a normal thread context
*
****************************************************************************/
static int musb_pipe_wait(struct musb_pipe *chan, uint32_t timeout)
{
int ret;
/* Loop, testing for an end of transfer condition. The channel 'result'
* was set to EBUSY and 'waiter' was set to true before the transfer;
* 'waiter' will be set to false and 'result' will be set appropriately
* when the transfer is completed.
*/
if (chan->waiter) {
ret = usb_osal_sem_take(chan->waitsem, timeout);
if (ret < 0) {
return ret;
}
}
/* The transfer is complete and return the result */
ret = chan->result;
if (ret < 0) {
return ret;
}
return chan->xfrd;
}
/****************************************************************************
* Name: musb_pipe_wakeup
*
* Description:
* A channel transfer has completed... wakeup any threads waiting for the
* transfer to complete.
*
* Assumptions:
* This function is called from the transfer complete interrupt handler for
* the channel. Interrupts are disabled.
*
****************************************************************************/
static void musb_pipe_wakeup(struct musb_pipe *chan)
{
usbh_asynch_callback_t callback;
void *arg;
int nbytes;
chan->enable = false;
/* Is the transfer complete? */
if (chan->waiter) {
/* Wake'em up! */
chan->waiter = false;
usb_osal_sem_give(chan->waitsem);
}
#ifdef CONFIG_USBHOST_ASYNCH
/* No.. is an asynchronous callback expected when the transfer
* completes?
*/
else if (chan->callback) {
callback = chan->callback;
arg = chan->arg;
nbytes = chan->xfrd;
chan->callback = NULL;
chan->arg = NULL;
if (chan->result < 0) {
nbytes = chan->result;
}
callback(arg, nbytes);
}
#endif
}
__WEAK void usb_hc_low_level_init(void)
{
}
int usb_hc_sw_init(void)
{
memset(&g_musb_hcd, 0, sizeof(struct musb_hcd));
for (uint8_t i = 0; i < CONIFG_USB_MUSB_PIPE_NUM; i++) {
g_musb_hcd.exclsem[i] = usb_osal_mutex_create();
g_musb_hcd.chan[i][0].waitsem = usb_osal_sem_create(0);
g_musb_hcd.chan[i][1].waitsem = usb_osal_sem_create(0);
}
return 0;
}
int usb_hc_hw_init(void)
{
uint8_t regval;
uint32_t fifo_offset = 0;
usb_hc_low_level_init();
musb_set_active_ep(0);
HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = 0;
HWREGB(USB_BASE + MUSB_TXFIFOSZ_OFFSET) = USB_TXFIFOSZ_SIZE_64;
HWREGH(USB_BASE + MUSB_TXFIFOADD_OFFSET) = 0;
HWREGB(USB_BASE + MUSB_RXFIFOSZ_OFFSET) = USB_TXFIFOSZ_SIZE_64;
HWREGH(USB_BASE + MUSB_RXFIFOADD_OFFSET) = 0;
fifo_offset += 64;
for (uint8_t i = 1; i < CONIFG_USB_MUSB_PIPE_NUM; i++) {
musb_set_active_ep(i);
HWREGB(USB_BASE + MUSB_TXFIFOSZ_OFFSET) = USB_TXFIFOSZ_SIZE_512;
HWREGH(USB_BASE + MUSB_TXFIFOADD_OFFSET) = fifo_offset;
HWREGB(USB_BASE + MUSB_RXFIFOSZ_OFFSET) = USB_TXFIFOSZ_SIZE_512;
HWREGH(USB_BASE + MUSB_RXFIFOADD_OFFSET) = fifo_offset;
fifo_offset += 512;
}
/* Enable USB interrupts */
regval = USB_IE_RESET | USB_IE_CONN | USB_IE_DISCON |
USB_IE_RESUME | USB_IE_SUSPND |
USB_IE_BABBLE | USB_IE_SESREQ | USB_IE_VBUSERR;
HWREGB(USB_BASE + MUSB_IE_OFFSET) = regval;
HWREGH(USB_BASE + MUSB_TXIE_OFFSET) = USB_TXIE_EP0;
HWREGH(USB_BASE + MUSB_RXIE_OFFSET) = 0;
HWREGB(USB_BASE + MUSB_POWER_OFFSET) |= USB_POWER_HSENAB;
HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) |= USB_DEVCTL_SESSION;
#ifdef CONFIG_USB_MUSB_SUNXI
musb_set_active_ep(0);
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_CSRL0_TXRDY;
#endif
return 0;
}
bool usbh_get_port_connect_status(const uint8_t port)
{
if (HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) & USB_DEVCTL_FSDEV)
return true;
if (HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) & USB_DEVCTL_LSDEV)
return true;
return false;
}
int usbh_reset_port(const uint8_t port)
{
HWREGB(USB_BASE + MUSB_POWER_OFFSET) |= USB_POWER_RESET;
usb_osal_msleep(20);
HWREGB(USB_BASE + MUSB_POWER_OFFSET) &= ~(USB_POWER_RESET);
usb_osal_msleep(20);
return 0;
}
uint8_t usbh_get_port_speed(const uint8_t port)
{
uint8_t speed;
if (HWREGB(USB_BASE + MUSB_POWER_OFFSET) & USB_POWER_HSMODE)
speed = USB_SPEED_HIGH;
else if (HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) & USB_DEVCTL_FSDEV)
speed = USB_SPEED_FULL;
else if (HWREGB(USB_BASE + MUSB_DEVCTL_OFFSET) & USB_DEVCTL_LSDEV)
speed = USB_SPEED_LOW;
return speed;
}
int usbh_ep0_reconfigure(usbh_epinfo_t ep, uint8_t dev_addr, uint8_t ep_mps, uint8_t speed)
{
int ret;
struct musb_pipe *chan = (struct musb_pipe *)ep;
ret = usb_osal_mutex_take(g_musb_hcd.exclsem[0]);
if (ret < 0) {
return ret;
}
chan->mps = ep_mps;
chan->hport->dev_addr = dev_addr;
if (speed == USB_SPEED_HIGH) {
chan->speed = USB_TYPE0_SPEED_HIGH;
} else if (speed == USB_SPEED_FULL) {
chan->speed = USB_TYPE0_SPEED_FULL;
} else if (speed == USB_SPEED_LOW) {
chan->speed = USB_TYPE0_SPEED_LOW;
}
usb_osal_mutex_give(g_musb_hcd.exclsem[0]);
return ret;
}
int usbh_ep_alloc(usbh_epinfo_t *ep, const struct usbh_endpoint_cfg *ep_cfg)
{
struct usbh_hubport *hport;
struct musb_pipe *chan;
uint8_t ep_idx = 0;
uint8_t old_ep_index;
hport = ep_cfg->hport;
ep_idx = ep_cfg->ep_addr & 0x7f;
if (ep_idx > CONIFG_USB_MUSB_PIPE_NUM) {
return -1;
}
old_ep_index = musb_get_active_ep();
musb_set_active_ep(ep_idx);
if (ep_cfg->ep_addr & 0x80) {
chan = &g_musb_hcd.chan[ep_idx][1];
chan->in = true;
} else {
chan = &g_musb_hcd.chan[ep_idx][0];
chan->in = false;
}
chan->enable = false;
chan->ep_idx = ep_idx;
if (ep_cfg->ep_type == USB_ENDPOINT_TYPE_CONTROL) {
chan->interval = 0;
chan->mps = ep_cfg->ep_mps;
chan->hport = hport;
*ep = (usbh_epinfo_t)chan;
} else {
chan->interval = ep_cfg->ep_interval;
chan->mps = ep_cfg->ep_mps;
if (hport->speed == USB_SPEED_HIGH) {
chan->speed = USB_TXTYPE1_SPEED_HIGH;
} else if (hport->speed == USB_SPEED_FULL) {
chan->speed = USB_TXTYPE1_SPEED_FULL;
} else if (hport->speed == USB_SPEED_LOW) {
chan->speed = USB_TXTYPE1_SPEED_LOW;
}
chan->hport = hport;
if (chan->in) {
HWREGH(USB_BASE + MUSB_RXIE_OFFSET) |= (1 << ep_idx);
} else {
HWREGH(USB_BASE + MUSB_TXIE_OFFSET) |= (1 << ep_idx);
}
*ep = (usbh_epinfo_t)chan;
}
musb_set_active_ep(old_ep_index);
return 0;
}
int usbh_ep_free(usbh_epinfo_t ep)
{
//struct musb_pipe *chan = (struct musb_pipe *)ep;
return 0;
}
int usbh_control_transfer(usbh_epinfo_t ep, struct usb_setup_packet *setup, uint8_t *buffer)
{
int ret;
uint32_t old_ep_index;
struct musb_pipe *chan = (struct musb_pipe *)ep;
ret = usb_osal_mutex_take(g_musb_hcd.exclsem[0]);
if (ret < 0) {
return ret;
}
ret = musb_pipe_waitsetup(chan);
if (ret < 0) {
goto errout_with_mutex;
}
old_ep_index = musb_get_active_ep();
musb_set_active_ep(0);
HWREGB(USB_TXADDR_BASE(0)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->speed;
if (chan->hport->parent == NULL) {
HWREGB(USB_TXHUBADDR_BASE(0)) = 0;
HWREGB(USB_TXHUBPORT_BASE(0)) = 0;
} else {
HWREGB(USB_TXHUBADDR_BASE(0)) = chan->hport->parent->dev_addr;
HWREGB(USB_TXHUBPORT_BASE(0)) = chan->hport->parent->index - 1;
}
musb_write_packet(0, (uint8_t *)setup, 8);
ep0_outlen = 8;
if (setup->wLength && buffer) {
if (setup->bmRequestType & 0x80) {
usb_ep0_state = USB_EP0_STATE_IN_DATA;
} else {
usb_ep0_state = USB_EP0_STATE_OUT_DATA;
}
chan->buffer = buffer;
chan->buflen = setup->wLength;
} else {
usb_ep0_state = USB_EP0_STATE_IN_STATUS;
}
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_CSRL0_TXRDY | USB_CSRL0_SETUP;
musb_set_active_ep(old_ep_index);
ret = musb_pipe_wait(chan, CONFIG_USBHOST_CONTROL_TRANSFER_TIMEOUT);
if (ret < 0) {
goto errout_with_mutex;
}
usb_osal_mutex_give(g_musb_hcd.exclsem[0]);
return ret;
errout_with_mutex:
chan->waiter = false;
chan->enable = false;
usb_osal_mutex_give(g_musb_hcd.exclsem[0]);
return ret;
}
int usbh_ep_bulk_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, uint32_t timeout)
{
int ret;
uint32_t old_ep_index;
struct musb_pipe *chan = (struct musb_pipe *)ep;
ret = usb_osal_mutex_take(g_musb_hcd.exclsem[chan->ep_idx]);
if (ret < 0) {
return ret;
}
ret = musb_pipe_waitsetup(chan);
if (ret < 0) {
goto errout_with_mutex;
}
old_ep_index = musb_get_active_ep();
musb_set_active_ep(chan->ep_idx);
if (chan->in) {
HWREGB(USB_RXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_RXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_BULK;
HWREGB(USB_BASE + MUSB_IND_RXINTERVAL_OFFSET) = chan->interval;
if (chan->hport->parent == NULL) {
HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = 0;
HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = 0;
} else {
HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr;
HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1;
}
chan->buffer = buffer;
chan->buflen = buflen;
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT;
} else {
HWREGB(USB_TXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_BULK;
HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = chan->interval;
if (chan->hport->parent == NULL) {
HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = 0;
HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = 0;
} else {
HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr;
HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1;
}
chan->buffer = buffer;
chan->buflen = buflen;
if (buflen > chan->mps) {
buflen = chan->mps;
}
musb_write_packet(chan->ep_idx, chan->buffer, buflen);
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) |= USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY;
}
musb_set_active_ep(old_ep_index);
ret = musb_pipe_wait(chan, timeout);
if (ret < 0) {
goto errout_with_mutex;
}
usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]);
return ret;
errout_with_mutex:
chan->waiter = false;
chan->enable = false;
usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]);
return ret;
}
int usbh_ep_intr_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, uint32_t timeout)
{
int ret;
uint32_t old_ep_index;
struct musb_pipe *chan = (struct musb_pipe *)ep;
ret = usb_osal_mutex_take(g_musb_hcd.exclsem[chan->ep_idx]);
if (ret < 0) {
return ret;
}
ret = musb_pipe_waitsetup(chan);
if (ret < 0) {
goto errout_with_mutex;
}
old_ep_index = musb_get_active_ep();
musb_set_active_ep(chan->ep_idx);
if (chan->in) {
HWREGB(USB_RXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_RXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_INT;
HWREGB(USB_BASE + MUSB_IND_RXINTERVAL_OFFSET) = chan->interval;
if (chan->hport->parent == NULL) {
HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = 0;
HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = 0;
} else {
HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr;
HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1;
}
chan->buffer = buffer;
chan->buflen = buflen;
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT;
} else {
HWREGB(USB_TXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_INT;
HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = chan->interval;
if (chan->hport->parent == NULL) {
HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = 0;
HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = 0;
} else {
HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr;
HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1;
}
chan->buffer = buffer;
chan->buflen = buflen;
if (buflen > chan->mps) {
buflen = chan->mps;
}
musb_write_packet(chan->ep_idx, chan->buffer, buflen);
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) |= USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY;
}
musb_set_active_ep(old_ep_index);
ret = musb_pipe_wait(chan, timeout);
if (ret < 0) {
goto errout_with_mutex;
}
usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]);
return ret;
errout_with_mutex:
chan->waiter = false;
chan->enable = false;
usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]);
return ret;
}
int usbh_ep_bulk_async_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, usbh_asynch_callback_t callback, void *arg)
{
int ret;
uint32_t old_ep_index;
struct musb_pipe *chan = (struct musb_pipe *)ep;
if (chan->enable) {
return -EINVAL;
}
ret = usb_osal_mutex_take(g_musb_hcd.exclsem[chan->ep_idx]);
if (ret < 0) {
return ret;
}
ret = musb_pipe_asynchsetup(chan, callback, arg);
if (ret < 0) {
goto errout_with_mutex;
}
old_ep_index = musb_get_active_ep();
musb_set_active_ep(chan->ep_idx);
if (chan->in) {
HWREGB(USB_RXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_RXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_BULK;
HWREGB(USB_BASE + MUSB_IND_RXINTERVAL_OFFSET) = chan->interval;
if (chan->hport->parent == NULL) {
HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = 0;
HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = 0;
} else {
HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr;
HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1;
}
chan->buffer = buffer;
chan->buflen = buflen;
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT;
} else {
HWREGB(USB_TXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_BULK;
HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = chan->interval;
if (chan->hport->parent == NULL) {
HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = 0;
HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = 0;
} else {
HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr;
HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1;
}
chan->buffer = buffer;
chan->buflen = buflen;
if (buflen > chan->mps) {
buflen = chan->mps;
}
musb_write_packet(chan->ep_idx, chan->buffer, buflen);
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) |= USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY;
}
musb_set_active_ep(old_ep_index);
usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]);
return ret;
errout_with_mutex:
chan->enable = false;
chan->enable = false;
usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]);
return ret;
}
int usbh_ep_intr_async_transfer(usbh_epinfo_t ep, uint8_t *buffer, uint32_t buflen, usbh_asynch_callback_t callback, void *arg)
{
int ret;
uint32_t old_ep_index;
struct musb_pipe *chan = (struct musb_pipe *)ep;
if (chan->enable) {
return -EINVAL;
}
ret = usb_osal_mutex_take(g_musb_hcd.exclsem[chan->ep_idx]);
if (ret < 0) {
return ret;
}
ret = musb_pipe_asynchsetup(chan, callback, arg);
if (ret < 0) {
goto errout_with_mutex;
}
old_ep_index = musb_get_active_ep();
musb_set_active_ep(chan->ep_idx);
if (chan->in) {
HWREGB(USB_RXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_RXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_INT;
HWREGB(USB_BASE + MUSB_IND_RXINTERVAL_OFFSET) = chan->interval;
if (chan->hport->parent == NULL) {
HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = 0;
HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = 0;
} else {
HWREGB(USB_RXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr;
HWREGB(USB_RXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1;
}
chan->buffer = buffer;
chan->buflen = buflen;
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT;
} else {
HWREGB(USB_TXADDR_BASE(chan->ep_idx)) = chan->hport->dev_addr;
HWREGB(USB_BASE + MUSB_IND_TXTYPE_OFFSET) = chan->ep_idx | chan->speed | USB_TXTYPE1_PROTO_INT;
HWREGB(USB_BASE + MUSB_IND_TXINTERVAL_OFFSET) = chan->interval;
if (chan->hport->parent == NULL) {
HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = 0;
HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = 0;
} else {
HWREGB(USB_TXHUBADDR_BASE(chan->ep_idx)) = chan->hport->parent->dev_addr;
HWREGB(USB_TXHUBPORT_BASE(chan->ep_idx)) = chan->hport->parent->index - 1;
}
chan->buffer = buffer;
chan->buflen = buflen;
if (buflen > chan->mps) {
buflen = chan->mps;
}
musb_write_packet(chan->ep_idx, chan->buffer, buflen);
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) &= ~USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_TXCSRH_OFFSET) |= USB_TXCSRH1_MODE;
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY;
}
musb_set_active_ep(old_ep_index);
usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]);
return ret;
errout_with_mutex:
chan->enable = false;
chan->enable = false;
usb_osal_mutex_give(g_musb_hcd.exclsem[chan->ep_idx]);
return ret;
}
int usb_ep_cancel(usbh_epinfo_t ep)
{
size_t flags;
struct musb_pipe *chan = (struct musb_pipe *)ep;
#ifdef CONFIG_USBHOST_ASYNCH
usbh_asynch_callback_t callback;
void *arg;
#endif
flags = usb_osal_enter_critical_section();
chan->result = -ESHUTDOWN;
#ifdef CONFIG_USBHOST_ASYNCH
/* Extract the callback information */
callback = chan->callback;
arg = chan->arg;
chan->callback = NULL;
chan->arg = NULL;
chan->xfrd = 0;
#endif
chan->enable = false;
usb_osal_leave_critical_section(flags);
/* Is there a thread waiting for this transfer to complete? */
if (chan->waiter) {
/* Wake'em up! */
chan->waiter = false;
usb_osal_sem_give(chan->waitsem);
}
#ifdef CONFIG_USBHOST_ASYNCH
/* No.. is an asynchronous callback expected when the transfer completes? */
else if (callback) {
/* Then perform the callback */
callback(arg, -ESHUTDOWN);
}
#endif
return 0;
}
void handle_ep0(void)
{
uint8_t ep0_status;
struct musb_pipe *chan;
int result = 0;
chan = (struct musb_pipe *)&g_musb_hcd.chan[0][0];
musb_set_active_ep(0);
ep0_status = HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET);
if (ep0_status & USB_CSRL0_STALLED) {
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_CSRL0_STALLED;
usb_ep0_state = USB_EP0_STATE_SETUP;
result = -EPERM;
goto chan_wait;
}
if (ep0_status & USB_CSRL0_ERROR) {
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_CSRL0_ERROR;
musb_fifo_flush(0);
usb_ep0_state = USB_EP0_STATE_SETUP;
result = -EIO;
goto chan_wait;
}
if (ep0_status & USB_CSRL0_STALL) {
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_CSRL0_STALL;
usb_ep0_state = USB_EP0_STATE_SETUP;
result = -EPERM;
goto chan_wait;
}
switch (usb_ep0_state) {
case USB_EP0_STATE_SETUP:
break;
case USB_EP0_STATE_IN_DATA:
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_RXCSRL1_REQPKT;
usb_ep0_state = USB_EP0_STATE_IN_DATA_C;
chan->xfrd += 8;
break;
case USB_EP0_STATE_IN_DATA_C:
if (ep0_status & USB_CSRL0_RXRDY) {
uint32_t size = chan->buflen;
if (size > chan->mps) {
size = chan->mps;
}
size = MIN(size, HWREGH(USB_BASE + MUSB_IND_RXCOUNT_OFFSET));
musb_read_packet(0, chan->buffer, size);
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_CSRL0_RXRDY;
chan->buffer += size;
chan->buflen -= size;
chan->xfrd += size;
if ((size < chan->mps) || (chan->buflen == 0)) {
usb_ep0_state = USB_EP0_STATE_OUT_STATUS;
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = (USB_CSRL0_TXRDY | USB_CSRL0_STATUS);
} else {
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_RXCSRL1_REQPKT;
}
}
break;
case USB_EP0_STATE_OUT_STATUS:
usb_ep0_state = USB_EP0_STATE_SETUP;
result = 0;
goto chan_wait;
case USB_EP0_STATE_IN_STATUS_C:
if (ep0_status & (USB_CSRL0_RXRDY | USB_CSRL0_STATUS)) {
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~(USB_CSRL0_RXRDY | USB_CSRL0_STATUS);
}
usb_ep0_state = USB_EP0_STATE_SETUP;
result = 0;
goto chan_wait;
break;
case USB_EP0_STATE_IN_STATUS:
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = (USB_CSRL0_REQPKT | USB_CSRL0_STATUS);
usb_ep0_state = USB_EP0_STATE_IN_STATUS_C;
chan->xfrd += 8;
break;
case USB_EP0_STATE_OUT_DATA: {
uint32_t size = chan->buflen;
if (size > chan->mps) {
size = chan->mps;
}
chan->xfrd += ep0_outlen;
musb_write_packet(0, chan->buffer, size);
chan->buffer += size;
chan->buflen -= size;
ep0_outlen = size;
if (size == chan->mps) {
} else {
usb_ep0_state = USB_EP0_STATE_IN_STATUS;
}
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_CSRL0_TXRDY;
}
break;
}
return;
chan_wait:
if (chan->enable) {
chan->result = result;
musb_pipe_wakeup(chan);
}
}
void USBH_IRQHandler(void)
{
uint32_t is;
uint32_t txis;
uint32_t rxis;
uint8_t ep_csrl_status;
// uint8_t ep_csrh_status;
struct musb_pipe *chan;
uint8_t ep_idx;
uint8_t old_ep_idx;
int result = 0;
is = HWREGB(USB_BASE + MUSB_IS_OFFSET);
txis = HWREGH(USB_BASE + MUSB_TXIS_OFFSET);
rxis = HWREGH(USB_BASE + MUSB_RXIS_OFFSET);
HWREGB(USB_BASE + MUSB_IS_OFFSET) = is;
old_ep_idx = musb_get_active_ep();
if (is & USB_IS_CONN) {
if (usbh_get_port_connect_status(0)) {
usbh_event_notify_handler(USBH_EVENT_CONNECTED, 1);
}
}
if (is & USB_IS_DISCON) {
if (usbh_get_port_connect_status(0) == false) {
for (ep_idx = 0; ep_idx < CONIFG_USB_MUSB_PIPE_NUM; ep_idx++) {
for (uint8_t j = 0; j < 2; j++) {
chan = &g_musb_hcd.chan[ep_idx][j];
if (chan->waiter) {
chan->result = -ENXIO;
musb_pipe_wakeup(chan);
}
}
}
usbh_event_notify_handler(USBH_EVENT_DISCONNECTED, 1);
}
}
if (is & USB_IS_SOF) {
}
if (is & USB_IS_RESUME) {
}
if (is & USB_IS_SUSPEND) {
}
if (is & USB_IS_VBUSERR) {
}
if (is & USB_IS_SESREQ) {
}
if (is & USB_IS_BABBLE) {
}
txis &= HWREGH(USB_BASE + MUSB_TXIE_OFFSET);
/* Handle EP0 interrupt */
if (txis & USB_TXIE_EP0) {
txis &= ~USB_TXIE_EP0;
HWREGH(USB_BASE + MUSB_TXIS_OFFSET) = USB_TXIE_EP0;
handle_ep0();
}
for (ep_idx = 1; ep_idx < CONIFG_USB_MUSB_PIPE_NUM; ep_idx++) {
if (txis & (1 << ep_idx)) {
HWREGH(USB_BASE + MUSB_TXIS_OFFSET) = (1 << ep_idx);
chan = &g_musb_hcd.chan[ep_idx][0];
musb_set_active_ep(ep_idx);
ep_csrl_status = HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET);
if (ep_csrl_status & USB_TXCSRL1_ERROR) {
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_TXCSRL1_ERROR;
result = -EIO;
goto chan_wait;
} else if (ep_csrl_status & USB_TXCSRL1_NAKTO) {
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_TXCSRL1_NAKTO;
result = -EBUSY;
goto chan_wait;
} else if (ep_csrl_status & USB_TXCSRL1_STALL) {
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) &= ~USB_TXCSRL1_STALL;
result = -EPERM;
goto chan_wait;
} else {
uint32_t size = chan->buflen;
if (size > chan->mps) {
size = chan->mps;
}
chan->buffer += size;
chan->buflen -= size;
chan->xfrd += size;
if (chan->buflen == 0) {
result = 0;
goto chan_wait;
} else {
musb_write_packet(ep_idx, chan->buffer, size);
HWREGB(USB_BASE + MUSB_IND_TXCSRL_OFFSET) = USB_TXCSRL1_TXRDY;
}
}
}
}
rxis &= HWREGH(USB_BASE + MUSB_RXIE_OFFSET);
for (ep_idx = 1; ep_idx < CONIFG_USB_MUSB_PIPE_NUM; ep_idx++) {
if (rxis & (1 << ep_idx)) {
HWREGH(USB_BASE + MUSB_RXIS_OFFSET) = (1 << ep_idx); // clear isr flag
chan = &g_musb_hcd.chan[ep_idx][1];
musb_set_active_ep(ep_idx);
ep_csrl_status = HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET);
//ep_csrh_status = HWREGB(USB_BASE + MUSB_IND_RXCSRH_OFFSET); // todo:for iso transfer
if (ep_csrl_status & USB_RXCSRL1_ERROR) {
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) &= ~USB_RXCSRL1_ERROR;
result = -EIO;
goto chan_wait;
} else if (ep_csrl_status & USB_RXCSRL1_NAKTO) {
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) &= ~USB_RXCSRL1_NAKTO;
result = -EBUSY;
goto chan_wait;
} else if (ep_csrl_status & USB_RXCSRL1_STALL) {
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) &= ~USB_RXCSRL1_STALL;
result = -EPERM;
goto chan_wait;
} else if (ep_csrl_status & USB_RXCSRL1_RXRDY) {
uint32_t size = chan->buflen;
if (size > chan->mps) {
size = chan->mps;
}
size = MIN(size, HWREGH(USB_BASE + MUSB_IND_RXCOUNT_OFFSET));
musb_read_packet(ep_idx, chan->buffer, size);
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) &= ~USB_RXCSRL1_RXRDY;
chan->buffer += size;
chan->buflen -= size;
chan->xfrd += size;
if ((size < chan->mps) || (chan->buflen == 0)) {
result = 0;
goto chan_wait;
} else {
HWREGB(USB_BASE + MUSB_IND_RXCSRL_OFFSET) = USB_RXCSRL1_REQPKT;
}
}
}
}
musb_set_active_ep(old_ep_idx);
return;
chan_wait:
musb_set_active_ep(old_ep_idx);
if (chan->enable) {
chan->result = result;
musb_pipe_wakeup(chan);
}
}